Calculations
ElemCo.ElemCo — Module ╭─────────────╮
Electron Correlation methods
╰─────────────╯The ElemCo module contains the main macros and functions for running electronic structure calculations. The methods are contained in various submodules and are described in the following sections.
Various macros are defined and exported to simplify running calculations. The macros use several reserved variable names. The following table lists the reserved variable names and their meanings.
| Variable | Meaning |
|---|---|
EC::ECInfo | A global information object containing options, molecular system description, integrals and orbital spaces information, see ElemCo.ECInfo. |
geometry::String | Molecular coordinates, either in the xyz format or the file containing the xyz coordinates, see ElemCo.MSystems. |
basis::Union{Dict,String} | Basis set information, see ElemCo.MSystems |
fcidump::String | File containing the integrals in the FCIDUMP format, see ElemCo.FciDumps. |
The driver routines and macros return energies as ordered descriptive dictionaries ElemCo.ODDict. The last energy is always the total energy (can be accessed using last_energy(energies)). The following table lists the keys and their meanings.
| Key | Meaning |
|---|---|
E | Total energy |
Ec | Correlation energy |
HF | Hartree-Fock energy |
MP2 | MP2 energy |
CCSD | CCSD energy |
DCSD | DCSD energy |
SING2D-DCSD | singlet 2D-DCSD energy |
TRIP2D-DCSD | triplet 2D-DCSD energy |
| etc. |
One can print the keys of the returned ODDict to see all the available keys:
julia> println(keys(energies))or display the complete dictionary together with the descriptions as
julia> display(energies)The values and the descriptions can be accessed using the keys as
julia> energies["E"] # Total energy
julia> energies("E") # Description of the total energyMacros
ElemCo.@ECinit — Macro@ECinit()Initialize EC::ECInfo and add molecular system and/or fcidump if variables geometry::String and basis::Dict{String,Any} and/or fcidump::String are defined.
If EC is already initialized, it will be overwritten.
Examples
geometry="He 0.0 0.0 0.0"
basis = Dict("ao"=>"cc-pVDZ", "jkfit"=>"cc-pvtz-jkfit", "mpfit"=>"cc-pvdz-mpfit")
@ECinit
# output
Occupied orbitals:[1]
ElemCo.@bohf — Macro@bohf()Run bi-orthogonal HF calculation using FCIDUMP integrals.
The orbitals are stored to WfOptions.orb. For open-shell systems (or UHF FCIDUMPs), the BO-UHF energy is calculated.
Examples
fcidump = "FCIDUMP"
@bohfElemCo.@bouhf — Macro@bouhf()Run bi-orthogonal UHF calculation using FCIDUMP integrals.
ElemCo.@cc — Macro@cc(method, kwargs...)Run coupled cluster calculation.
The type of the method is determined by the first argument (ccsd/ccsd(t)/dcsd etc). The method can be specified as a string or as a variable, e.g., @cc CCSD or @cc "CCSD" or ccmethod="CCSD"; @cc ccmethod.
Keyword arguments
fcidump::String: fcidump file (default: "", i.e., use integrals fromEC).occa::String: occupied α orbitals (default: "-").occb::String: occupied β orbitals (default: "-").
The occupation strings can be given as a + separated list, e.g. occa = 1+2+3 or equivalently 1-3. Additionally, the spatial symmetry of the orbitals can be specified with the syntax orb.sym, e.g. occa = "-5.1+-2.2+-4.3".
Examples
geometry="bohr
O 0.000000000 0.000000000 -0.130186067
H1 0.000000000 1.489124508 1.033245507
H2 0.000000000 -1.489124508 1.033245507"
basis = Dict("ao"=>"cc-pVDZ", "jkfit"=>"cc-pvtz-jkfit", "mpfit"=>"cc-pvdz-mpfit")
@dfhf
@dfints
@cc ccsdElemCo.@check_molproinfo — Macro@check_molproinfo()Check if MolproInterface.MolproInfo is initialized and return the files. If not initialized, throw an error.
ElemCo.@copyfile — Macro@copyfile(from_file, to_file, kwargs...)Copy file from_file to to_file in EC.scr directory.
Keyword arguments
overwrite::Bool: overwrite existing file (default:false).
ElemCo.@dfcc — Macro@dfcc(method="svd-dcsd")Run coupled cluster calculation using density fitted integrals.
The type of the method is determined by the first argument. The method can be specified as a string or as a variable, e.g., @dfcc SVD-DCSD or @dfcc "SVD-DCSD" or ccmethod="SVD-DCSD"; @dfcc ccmethod.
Examples
geometry="bohr
O 0.000000000 0.000000000 -0.130186067
H1 0.000000000 1.489124508 1.033245507
H2 0.000000000 -1.489124508 1.033245507"
basis = Dict("ao"=>"cc-pVDZ", "jkfit"=>"cc-pvtz-jkfit", "mpfit"=>"cc-pvdz-mpfit")
@dfhf
@dfcc svd-dcsdElemCo.@dfhf — Macro@dfhf()Run DF-HF calculation. The orbitals are stored to WfOptions.orb.
ElemCo.@dfints — Macro@dfints()Generate 2 and 4-idx MO integrals using density fitting. The MO coefficients are read from WfOptions.orb.
ElemCo.@dfmcscf — Macro@dfmcscf()Run DF-MCSCF calculation. The orbitals are stored to WfOptions.orb.
ElemCo.@dfmp2 — Macro@dfmp2()Run density-fitted MP2 calculation.
If save is set in CcOptions.save, the MP2 doubles amplitudes are saved to save*"_2" file.
ElemCo.@dfuhf — Macro@dfuhf()Run DF-UHF calculation. The orbitals are stored to WfOptions.orb.
ElemCo.@dummy — Macro@dummy(atoms)Set atoms as dummy atoms in the system. atoms is a list of atom indices or atomic symbols.
After running the macro, only the atoms in the list are set as dummy atoms in the system.
Examples
@dummy [1,2,3]
@dummy ["H1","H2"]
@dummy [1,"H2",:H3]
@dummy [] # unset all dummy atomsElemCo.@export_molden — Macro@export_molden(filename)Export current orbitals to Molden file filename.
ElemCo.@freeze_orbs — Macro@freeze_orbs(freeze_orbs)Freeze orbitals in the integrals according to an array or range freeze_orbs.
Alternatively, the orbitals can be specified as a String with the +/- or :/; syntax, e.g., "1-5+7-8", or "1:5;7-8".
Examples
fcidump = "FCIDUMP"
@freeze_orbs 1:5
...
@ECinit
@freeze_orbs [1,2,20,21]ElemCo.@import_matrix — Macro@import_matrix(filename)Import matrix from file file.
The type of the matrix is determined automatically.
ElemCo.@loadfile — Macro@loadfile(filename)Read file filename from EC.scr directory.
Example
fock = @loadfile("f_mm")
orbs = @loadfile("C_Am")ElemCo.@mainname — Macro@mainname(file)Return the main name of a file, i.e. the part before the last dot and the extension.
Examples
julia> @mainname("~/test.xyz")
("test", "xyz")ElemCo.@molpro_input — Macro@molpro_input(filename="elemcoil")Initialize the Molpro interface with the given filename.
It relies on the Molpro XML file to set up the molecule and basis set. If the basis variable exists, it will be updated with the AO basis set from the XML file.
See MolproInterface for more details on the Molpro interface.
ElemCo.@molpro_output — Macro@molpro_output(ecvariables, kwargs...)Save key-value pairs from ecvariables to a ECVARIABLES file in the MolproInterface.MolproInfo object.
The ecvariables is a dictionary with the variables to be included in the output. The keyword arguments are passed to the MolproInterface.save_ecvariables_to_file function. Possible keyword arguments include:
prefix::String: prefix for each variable in the output file (default: "")new::Bool: iftrue, create a new file, otherwise append to the existing file (default:true)
ElemCo.@opt — Macro@opt(opt, kwargs...)Alias for @set.
ElemCo.@print_input — Macro@print_input(print_init=false)Print the input file content.
Can be used to print the input file content to the output.
ElemCo.@reset — Macro@reset(opt)Reset options for opt to default values.
ElemCo.@rotate_orbs — Macro@rotate_orbs(orb1, orb2, angle, kwargs...)Rotate orbitals orb1 and orb2 from WfOptions.orb by angle (in degrees). For UHF, spin can be :α or :β (keyword argument).
The orbitals are stored to WfOptions.orb.
Keyword arguments
spin::Symbol: spin of the orbitals (default::α).
Examples
@dfhf
# swap orbitals 1 and 2
@rotate_orbs 1, 2, 90ElemCo.@run — Macrogeneral runner
ElemCo.@savefile — Macro@savefile(filename, arr, kwargs...)Save array or tuple of arrays arr to file filename in EC.scr directory.
Keyword arguments
description::String: description of the file (default: "tmp").overwrite::Bool: overwrite existing file (default:false).
ElemCo.@set — Macro@set(opt, kwargs...)Set options for EC::ECInfo.
The first argument opt is the name of the option (e.g., scf, cc, cholesky), see ECInfos.Options. The keyword arguments are the options to be set (e.g., thr=1.e-14, maxit=10). The current state of the options can be stored in a variable, e.g., opt_cc = @set cc. The state can then be restored by @set cc opt_cc. If EC is not already initialized, it will be done.
Examples
optscf = @set scf thr=1.e-14 maxit=10
@set cc maxit=100
...
@set scf optscfElemCo.@setupEC — Macro@setupEC()Setup EC::ECInfo with geometry, basis, and fcidump if defined.
ElemCo.@show_orbs — Macro@show_orbs(range=nothing)Show orbitals in the integrals according to an array or range range.
Examples
@dfhf
@show_orbs 1:5ElemCo.@transform_ints — Macro@transform_ints(type="")Rotate FCIDump integrals using WfOptions.orb as transformation matrices.
The orbitals are read from WfOptions.orb. If type is one of [bo, BO, bi-orthogonal, Bi-orthogonal, biorth, biorthogonal, Biorthogonal], the bi-orthogonal orbitals are used and the left transformation matrix is read from WfOptions.orb*WfOptions.left.
ElemCo.@tryECinit — Macro@tryECinit()If EC::ECInfo is not yet initialized, run @ECinit macro.
ElemCo.@var2string — Macro@var2string(var, strvar="")Return string representation of var.
If var is a String variable, return the value of the variable. Otherwise, return the string representation of var (or strvar if provided).
Examples
julia> @var2string(CCSD)
"CCSD"
julia> CCSD = "UCCSD";
julia> @var2string(CCSD)
"UCCSD"ElemCo.@write_ints — Macro@write_ints(file="FCIDUMP", tol=-1.0)Write FCIDump integrals to file file.
If tol is negative, all integrals are written, otherwise only integrals with absolute value larger than tol are written.
Exported functions
Internal functions
ElemCo.__init__ — Method__init__()Print the header with the version and the git hash of the current commit.
ElemCo.clean_exprstring — Methodclean_exprstring(expr)Return a clean string from an expression, i.e., without empty spaces and extra parentheses.
Examples
julia> clean_exprstring(:(SVD-CCSD))
"SVD-CCSD"
julia> clean_exprstring(:(eom-svd-df-ccsd(t)))
"eom-svd-df-ccsd(t)"