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Chapter 1

Introduction

1.1 General

In this document we collect the equations and derivations for methods implemented in the
ElemCo.jl package. The final goal is to have a document which can be used as a reference
for the equations and derivations. The final equations should also be contained in the
code as docstrings or copied to the corresponding Markdown files.

1.2 Notation

We use the following notation throughout the document.

The virtual orbitals are denoted by a,b,c,..., the occupied orbitals by i, 5, k, ..., the
active (open-shell) orbitals by ¢,u,v,..., and the general orbital indices are denoted by
p,q,r,s. The Einstein summation convention is used for repeated indices (repeated lower
and upper indices are summed over). The « and /3 spin orbitals are denoted by p and p.

The integrals are not antisymmetrized and denoted by v,7, where p, ¢, 7, s are indices
of orbitals, and the lower indices correspond to the creation and the upper indices to the
annihilation operators in the Hamiltonian,

Hy = Iy {&;dq}N + 27);; {a asar}N, (1.1)

ie., f1=(plflg) and vy = (pglrs).
Permutatlon operators:

P (ab) X = X2

- g 1.2
P (ab+ba) X2 = X7 12)
Symmetrization operators:
S (ab,ij) X} = X2 + Xi!
Antisymmetrization operators:
Al(ab) X1 = X4 — X!
( ) ab ab ba (14)

A (ab;ij) X

a

_ v o yIt_ oy Ji
b Xab Xab Xba + Xba



Chapter 2

CCSD and DCSD amplitude and A
equations

2.1 Closed-shell CCSD/DCSD Lagrangian

The singles-dressed factorization of the closed-shell CCSD and DCSD amplitude equa-
tions roughly follows the factorization from Ref. [1]. The closed-shell CCSD and DCSD
Lagrangian is given by
L = v+ (f+ f) T+ Agpoll, + Ash (000 T0) Thh + AT
+ALITHTY

ad ¢

w0t (o) { (s - 2ot 7 - (o el ) 74 )
T N _

(4 oBtTit) 78 - alsry - alsrd gt (14 - 1) |

+ A fo+ NTI + MOETY — AT

The DCSD Lagrangian is obtained by removing terms in red.
Integrals with hats are dressed integrals, i.e. they are obtained by dressing the integrals
with the singles amplitudes, and the Fock matrix is internally dressed, too, e.g.,

cid id | edri
Uy = v + v 1
Sii il ik
Vg = Vg — V15 (2.2)

Jie = b+ 205 — 0 = fi + (20 — i) T

Note that only the lower virtual and upper occupied indices are dressed.

The amplitude equations can be obtained by taking the derivative of the Lagrangian
with respect to the Lagrange multipliers A and setting the result to zero.

The most efficient version of CCSD/DCSD in ElemCo.jl combines the dressed factor-
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ization from above with the cckext type of factorization from Ref. [2] and is given by

L= olTH 4 (f,s + f,s) TE + A (0740 T2) Tht + A K685

pg-a

ab, cdrpkj il
+AG v g To

) 1 . . A 1 s j
08 Gabi) { (Js = 2ot ) 74 (f+ 20 gt Te ) 74

ol N e o )
~id cdrpik lj ~ic kg ~icrpkj  cdrpki lj lj
+ (%z + 5 Ukl Toe | Tap — UpaT ey — Ui Tad =i Tag (1 — 1,

ij 1 a 171
— K (55552 - §5Z5?Té> Tf} + ALK (26087 — §750)
— ML) (20787 — 0761) + Aghi, + AL fi Tl — Ao T
where

a-r-s

Ky = v (T + TiT)) 6760 + 6,178, + 1,667 + 6,07)

and h is the one-particle part of the Hamiltonian.

(2.3)

(2.4)

2.2 Closed-shell CCSD/DSCD Lagrangian multipli-

ers equations

The A equations are obtained by taking the derivative of the Lagrangian Eq. (2.1) with

respect to the amplitudes and setting the result to zero, i.e.,

oL
arm

=2 (2%, — 0D ) TY + 25 — AP0, — Ao + A6 + AP ol

jm ij “mb ij Yam mj“ab im " ab

+ Ao Ty + Aoy o T — AP oeh o) — Afsoet T

J im i “mb ij Yam™ cd
eb pd mij ae pd mij ab perkj ab pferpik
- Aij deb - Aij mTad - Amj kTab - Azm kTab

+ AYS (ab, ij) {(zﬁgffn — O) T — (2005, — 050) Tai }

bid lj ~jd il b ~edrlj b ~edrpil
— AL T — NSO T AR 0T 4+ Ao TY,

17 “ml 17 “ml mj“al im bl
eb~ic kj ab ~ecrpkj aerjc ik ab ~ecrik
+ AU Ty — A0k Ty + Af 0, Tae — A Ui Tae

aepic kg ab psecrpkj ebnjc ik ab nec ik
+ Aij Ukaac - Amjvkaac + Aij Ukacb - Aimvkach

= N+ AL+ AT (2005, — 0
+ A (208, — vD) Tl — ASobe, Thi — AL ST,

i “mk m"”jk

(2.5)
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oc
oT"

mn mn "~ ab

1 £ ij : ij ef ik ~e
= 38 (e, mn) | Mg, F156k, + AT (884000 T5) +A i T + Agmo]

_|_Aeb,UCfTC'll) + Aafqvedij

n "~ ml mjkn" ad

2mn cb

2 L s 1 y
+ ALS (af mn) (f§ — 2x §v2?Tfé) — AGS (eb, i) 2% 03], T

N 1, - 1 -
— NS (ef,in) ( fi+2x §vflegg) — A%.S (ab, mj) 2% 5@;£ng

. 1 - . 1 ~.
201 (afin) (86 + T ) — A2LS (afim) (it + i TE)  (20)

1 o 1 o
+ 2A$nb]5 (eb> m]) §U£?Téi - AngS (eb> n]) évfnleclli
— AYS (af,in) v, — ALS (eb,in) 0,

—ADLS (fb.m) v (TH =T ) = ASLS (af i) i, T

+A%S (ab,ij) vl TH
o+ T(mn) {5, 7+ Aol — Aols, } .
with a “contravariation” operator,
T(mn) X =2x¢ — X (2.7)

Now we can introduce useful intermediate quantities, related to the density matrices.
The one-body reduced density matrices can be written as

DI = —2A{TY),
Dy = 20T,
D e (2.8)
D} = A¢Tik,

Note that we have excluded here terms coming from the singles amplitudes. Thus, if
this density matrix is used to calculate properties, the corresponding integrals should be
dressed. Alternatively, one can define “dressed” density matrices which include the singles
contributions, ' '

D] = D] — DT?

Db = Db+ DVTF,
. (2.9)
D} = Dy,
D! = D! + 2T — DST" + DLT*.
Some parts of the two-body reduced density matrices can be written as
kl _ pcdikl
Dz‘j‘ = A Tcd‘
DY = AT (2.10)

naj A ackj carpkj
Dib - Azk ch + Azk‘ Tbc
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Finally, we define the following quantities which correspond to the cckext factorization
and a doubles-dressing of the Fock matrix,

Kp, = Avore

mn “pq
AP — N2t ohST — Aaw Taol g — Aob 08T 67 + Age, ToTY 6161 (2.11)
T = T w = oy

With these definitions, the A equations can be written as

oL

T = (2082 — v2)) DI+ 28, — 20267, + 2K1%,6¢ (87 + 62T}

ij o m mjor
kL ~ej  oneb (ned if\ e fd k fe  opelnid al sed (2.12)
—+ 2Dm'vkl 2Al] (/Umchd) Ddfm + Dmfk: 2Z)idvml + 2D5,40

J md“al

+2Dk0ie, — 2D or¢ — ASfi 4+ AL fe — Afal, — A% at.

ic “km mc“ka a

oc
oT"

mn-r-s

= gl + A5 (00,0t T2) + Dot + K 656]
af ( fe 1 e ef [ fi L ;

1 1 , -
+ 7 (mn) {QX Zv,jﬁD,’; —2x va,{an + Ay (@;; + v;;fnT;’;) (2.13)

1 n A
vy (aadf + Azl - afe,)|

af ~ie ebrif £l ce ek fd
_Azn Uma — Ainvmb_Dncvml + Dndvk:m :

2.3 Perturbative triples for closed-shell CCSD

The perturbative triples equations for CCSD are given by

Egp= Y pli,j, k) KX e
i<j<h
2 Atk (2.14)
pli,j k)= |1 i=j@j=k
0 i=j—k

X;{)’Z and K Zl}f are calculated for the triangular set of indices i < j < k (with k =1 : nye.),

b ik dkepig o dkrpij | digeik | djepik | dicpgk | dicpgk
KZkC - K;ch = Upc T;jd + Uge Tc;i + UciTcid + Uag)Tt;c + Uczzsz]d + Ub;chlc
ikl ikeplj ) kjrpli ijrplk ) kil itk
- Uljc szZz - vllc Tag) - UlbchZL - Ulzlj)Tac - Ulachlj) - UZJ;Tbc (215)
ik _ Mg, — 2000 — 2K — 20 + Koy + K,
abe €+ €+ € —€ — € —€
The (T) correction contains additionally the following terms,
o x S o

By = Egy+ Y pli,j, k) [vﬁiXiich“ + U XTI o X IR T

i<j<k (2.16)

_‘_jva]?cXijkfia + TifkacXijkf]z? 4 TiBainjkflg] .

abc abc abc
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In case of ACCSD(T) K/ is different from K, Ik and is calculated using the Lagrange
multipliers,

abc __ _ bc A ad ac A db chb A ad ab A dc ca A bd ba A dc
K5 = vapNiy + vgi\g) + vgi Ay + vgy Ajg + vai Ay + vgi Ajy

_ - _ _ - - 2.17

- A oA - AT - N Ay -
where A;’f are the covariant Lagrange multipliers,
- 2 1

A = SN+ AN (2.18)

3 3

Additionally, the conjugate-transposed amplitudes in Eq. (2.16) are replaced by the co-
variant Lagrange multipliers A?}’ and A} = %Af

2.4 Open-shell CCSD/DSCD Lagrangian

The factorization of the open-shell CCSD/DCSD amplitude equations roughly follows
the factorization of the closed-shell equations, Sec. 2.1. The open-shell CCSD and DCSD
Lagrangian — i.e., spin dependent — is given by

L=Ly+Ls+ Lap, (2.19)

1 " 1 nid i 1 u i 1 i
Lo=3 [vfé?lT "+ ( [+ f,j) Tf] +7 A (0 — 571 + 7 A (szz +2'“;;7Tc§z> T

1 ;o1 -
T ASGATE + ALS (abyig) {a0TH — 34T }

ij “ab

al

L. - N adi | i lj ~id id il (2'20)
MDA ab i) { (08 — o+ 79 T + (0 + o) T
+ AJOSTI + AT — AT — AJOS T
a i a £brij a pbrij
+Aifa +Aiijab +A1f§Ta5’

or using the cckext factorization,

1 : o (i L s
Lo [ontmht + (i + ) 72] + gt (e ot ) 72
1 i 1 o nermii  aikd
+ TASIG, (38 = OTE) (08 — O7T) + JAUS (ab i) {acry - a1 }
Ly ab . nid  adi | =id) i id id il (2-21)
+ ZLAz] A ((lb, 7’]) {(Ual — Uy + xal) Td{) + (Ual_ + ‘ral_) TbJJ}
a i ij ¢q k apic mjk anic gk
+ A (Kpﬂqag + Kpfq(sg> (67 — S1TE) — AT — Ao T!
+ AZRL + A FOTE + AL T
L3 is obtained from L, by flipping the spins;
Lop = vfT + N0 + A (00T ) T + AosiT
+ A {asTy + T - BT - AT )
] (2.22)

ab [ (nid _ ~di id | =id\ qlj ~jd _ ~dj Jd\ il
+ A {(Ual B + wop + Top) Tt + (UI;[ Uy T 2%{) Toq

~id cdrik \ plj | sdimril  aci ik ~id  cdril \ ki
+ (U +Uleac> Ty + 0 Toq — 0318 — (Op—v ) Togr s

al
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or using the cckext factorization,
cdrkl ab ( ~ij cdrij El ab 1-4j k q Gl
Lap = vigTeg + A (Uk]zﬂ’m‘Tcé) Ty + A5 KGg (07 — 67T7) (55 - 5?T5>

ab [ ncril | admid  aipkG il
+ A {%Td}+beaJ T [Tab}

T . . . . = =7 7 =7 T (223)
+ A { (00 — o+l + 2 T+ (03 — o + 2037 ) TS
+ (00 + otit) T+ 0 T — 0T — (o) T
The intermediate quantities are defined as follows,
ij TS yij ij _  rspij
Ky = quprjs ‘ Ky = vpqDrs |
DI = (T + TTy — TyT3) 6260 + A (i 1) ST + 5167 — 1]
DY = (T3 + TT] ) 626% + 61T10% + Tio26] + 0101
) 1 . .
id ik cd dc
Lo = iTac (Ukz _“kz)
7id = ot + Tkt (2:24)
T 1 5 _ -
id ik cd dc
Tar = 51az (UH*%)

B = fi+ 255 (T + T
e 1 -
6 = fo = 25 (ofiTH + ogiTH)

2.4.1 Spin-restricted open-shell CCSD/DSCD

The spin-restricted versions rccsd and rdcsd are obtained through spin-projection of the
residuals and amplitudes from the spin-dependent equations in each iteration. [3, ]
In this section we use the following notation:

aorqij _ i
Tab - Tab’

Ty =14 (2.25)
afrpij Tig’

and the spin-projected amplitudes are denoted by a bar, e.g., *#T ;{) Moreover, the
indices 7, , . .. run in the following part of the section over the closed-shell part of occupied
orbitals, a,b, ... over the (doubly) virtual orbitals, and ¢,u,... over the singly occupied
(or singly-virtual) orbitals.

The “closed-shell” part of spin-projected a8 amplitudes is given by

1 . . S i g
O‘BT"a{) = 6( oo a{)_’— BBTa{)_’_Q ﬂTa?)—'— BTchL+2 ﬂTlfa—i_ ﬂTib) (226)

The “open-shell” part of spin-projected a8 amplitudes is given by
1 . Bt aBemii
QBTai = §< IBBT&% +2 ﬁTai + ﬁTit)
1 : : A
—(eTH 42 8T BT (2.27)

5tu
2mg + 2

a,@th _

ab

ST = T+ 5 (O = T = 0T

a
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The projection corrections for the remaining amplitudes are defined in terms of the new
spin-projected a8 amplitudes as follows. For singles amplitudes,

. 1 . . _ .
aqi .~ ( o Bt ofrgwi

Ta - 2 ( Ta + Ta Tav) )

_. 1 . . .
Bpi . — ( agi Bri afrpui (228)
To=5 T+ "To+ T3,

Tt = °T! and AT = AT
For the aa and B8 amplitudes,

ooij _  afmqtj Brij

Tab = Tab - Tba’
T = T = T T
ﬁﬁTij _ ﬁﬂj"ﬁ _ OL/D’TU a,BTji (2'29)
at — ta at ~ at»

Ty = Ty and YT = PT
2.5 Open-shell CCSD/DSCD Lagrangian multipliers

equations

The Lagrange multipliers equations for the open-shell CCSD/DSCD Lagrangian can be
obtained by taking the derivatives with respect to the amplitudes and setting them to
Zero.

0L, 1 . g 1 ,
o ce ec k ec k e eb~1g ab ~ej ab ~ejrmkl
— (Vkm — Vi) T2 + SUmi s + [ — Aij Uy Amjvab + _Amjvkl Ty
T 2 1
+ lAab piekl lAebAcd T _ lAaeACd TY _ lAeb re TY _ lAab feTkj
imVklL ab ij UmbL cd ij Vam2 cd ijJm~ chb mjJ k= ab
4 4 4 2 2
1 y . . .
ab ~ce ~ec ij ~ie ~ie kj
+ §AZJ {(Uam - Uam) ch - (Ukm - Umk) Tab } (2 30)
eb~id rplj ab nedrplj ebrdi il '
- Aij O Ly, + Amjval Ty + Aij U L,
_pab paderrli  pebsid il ab sedril
Aoy Oar Ty — Nij 0Ty + Ay oai T
e, cd rpil e, .cd il a secmjk a ~ecrpik
- Az Umchd - Az United — AmvjkTac - Amvj]_gTaE
e fi a fe a (~ie ~ei a (. be eb i a. .eb ij
- Az fm + Amfa + Az (vam - Uam) + Az (Ujm - Ujm) Tab + Az Uija(_,
o N B
OF8 _ ek 4 *pab {@EC,T@ _ @EZ,T@}
oTyr  27mee gy Lmane s Tminab (2.31)
ar~ei a. .eb g a eb be ji
+ AZ Unma + AZ UijaB + AZ (Umj - vmj) Tbav
OLas _ _pebyid At T 4 A ITH _ Ahged ]
orm 2 “mb mj "~ ab mj“kl " ab tj “mb~ cd
e
_Aebferij  pab ferpki
A’U mTcE Amjf kTal;
ab | (nce _ nec ij | psed i (nie aie kj _ ~ej il (232)
+ Aij {(Uam Uam) TCB + UmbTaJ (Uk:m Umk) TaB m[Tab}
eb ~id lj ab_ned lj eb~di lj o ab_~de 15
- Aij O L g, + Amjval Ty + Aij Ul Amjval Ty
_ Aebsid ilj ab_pedrlj ebncj ik A ab ~edkj
NGO T + N0 T + AZ0 - T — AV 0T,
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The corresponding equations for the derivatives with respect to the § amplitudes are
obtained by flipping the spins.
Derivatives with respect to doubles amplitudes are given by
oL,
4 mn
oryy

1 e 1 e ~ij 1 c ij 1 ab ,efrpk
=A (efv mn) |:§U7r{n + ZLAZJf (UTqun—i_QUnlenjjuf’) +§A7rlz)nvk:{ thbl
1

—Aab ~ef _Aaf e _A?f“l _ 2><_Ad,] cf T — 2><—Aab' eka’]
+ 4 mnvab _'_ 2 mnxa 2 mxm 4 () vmn cb 4 m]’Ukn ab (233)

§ o 1 ( .
+ A (ol — 0, + aie,) + 5 (v —ol) T

+A% e — A 4 AC

m-an T mn mfn} ?

OLs _
arm

(2.34)

4 OLas

Lyeb cf mij 1. :
aTgan = A(ef;mn) {—QX—Aevaf TY _ 2><§A:’£jvszkg

2 zj mn= cp n= ab

(2.35)

b fd . df\ mlj b, fdmlj b ~fi
AL (“nl _Lm) Top + MV Tap + Aiﬁvnz] )
0L,
ory"

n= ab

1 eb CfT 19 1 ab ef kj

- ;oo 1 [P\ el (2.36)
e d l ae A1 7 e d d l
+ An?jvmedi + A (va]; + an;> + §A,nlzj (véi —Uﬁ}f> Tb]&
+ A% 05] — Asoil, + A, 1
0Ls 1

- 1 - s
_ Jb,ec pij ab, ef qkj
ef

(2.37)

nj ml ml ml

= o = o _ 1 - .

Poedrli | paf (o b (o ed . dey il
+ Acvr Ty + Ass (vﬁfba + x%%) + EAﬁj (vps—vi) T2
+ Aot — Mo, + AMLF

oL F T (i ool i\ o nab ik, nab e
Dot —uify ot A (a3 Akl + At
ef

a mn -~ aqb
+Aaf e _QXlAeZ) cf Tij—f—AeB Af_QXEAaf ed sz
mnLq 9 ij Umad maLy o4 Umnd oq
— Al #h, — 2X S Al T — ALt — 2 S AT T (2.38)

inm 9 mj n" ab 2 N ml” ab
r i ~ . . . l_) d r l_< l_) A_< r N ol =7
A (00, — 0k, + ale, + 3l5,) + N T + A (0] — of7 + 277
f nej b [ sif cf il af  edkj
— A — A% (8o mh) +ac o,
and the derivatives with respect to the 55 amplitudes are obtained by flipping the spins.
The one-body reduced density matrix (without singles contributions) is given by

, 1 coiit adomif
Dj = _§AichJd - AingJ
1 L
b _ L aberpkl g berk
D, = §Aleac + N Toe (2.39)
Df = A
D} = AT+ AT
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and the g 1RDM is obtained by flipping the spins.
The full (dressed) one-body reduced density matrix is given by

Db = D)+ DyTY,
D = Dy,
D! = D! +T! — D°T! + DiT*.

(2.40)

Additionally, we define intermediates related to the two-body reduced density matrix,
Dkl _ lAchkl
i = 9ttt
Kl _ Acdrkl
D = A Taa i (2.41)
Dy = AT + AT
~aj acrpkj acrik
Dy = NTG + AT

and doubles-dressed Fock matrix,

i edril cdril
Ty, = Vg Leg + 05T

c __ ,cdkl edrpkl (2'42)
Ty = Uk Tad + % Tad'
The intermediates for the cckext factorization are given by
rs __ Apq , TS
[A(mn = Azmqu - , . R (2.43)
At = N 0ady — Ay Ta07 05 — NG 60T 67 + A T0T5 0767

K’ and K2 are obtained by flipping the spins.

Finally, we define useful intermediates which can be precalculated and reused in the

equations,

~je ~ie ~et —ie ie
yam - Uam Uam + xam + xam

" o tem Tam (2.44
i = vfirg o+ 2c] |

With these intermediates the equations for the a Lagrange multipliers are given by

oL . o g o
— qe eq P eq Hp e ebij eb g
vle —ved ) DP + ol DE + fr — AS07 — AZ0Y

oTm - ( pm mp—4q ij “mb ij “mb
e

+ K860 (69 + 6°TY) + KI5 (52 + 5§T5) + Do + DL

mjor mjor mj

mb

1 ~C ij eb [ ned ij e fc re
— 5A (054, T5) — A (055T5) — Defe + Dhf (2.45)

el (~di ~di al ~ed ~de Ael ~id Aal ~ed
+Did(vml_vlm)+Dmd(v —-v )_DJU i+D 1Val

al al id " m md "~ al
ebncj ik A ab nedkj
+ A0 Ty — A0 g

= ALf AL FE = Af, — AL

mTa
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[V B L.
i = Unin — Ui + A <Uf¥m+v‘d T, ) +Dl v+ K, 606]
ef

2 mn~ cd
+ 8 (ef,mn) { Ash a6 - A, |
(2.46)

1 e 1 af ~ie eb +~j
+ A(ef;mn) {2><§Dfnvk£ — 2><§D§va{n + An{ am T Anijygq{:

m-an 7 -mn

PTG A 4 AC F }

The equations for the § Lagrange multipliers are obtained by flipping the spins. The
equations for the af Lagrange multipliers are given by

oL f f i 7 -d rid .l ef 3 f
777 = i+ A (et st T) + D il + K026
+ Nohag + AL e — Afal, — A
Lok ef o pkoef _ pencf f, e
+ 2X§ (Dm”lm + Dyv, . — Devag — Dévmﬁ> (2.47)

r ~ . I; /\7' r ~ R — 7 /\T
+ AW g+ Nl A2 g+ A e

_naf (el oedmqki) _ peb (~if o ef il
Amj <Uaﬁ Ukﬁ]ﬂa,{]) Aiﬁ (Uml; UrrLfTCb

+ A0 — A0 + A fi + Ata, — A0, + AL

m m

2.6 Perturbative triples for unrestricted CCSD

The perturbative triples equations for unrestricted CCSD are given by
g 1 I T | -
_ aberijk abcrpigk abc yijk abc ik
E[T] Y Z Kijk Taic + 6 Z KEE Td%é + 5 Z Kijf@ Xa]bé + 5 Z Kﬂk Xa]l;c' (248)
1<j<k i<j<k i<jk i<j;k

Kl‘f}f and T;if (and the all-S-counterparts) are calculated for a triangular set of indices

i <j <k (withk=3:n,),

abe __ 1-ijk dkrij dj ik dirpik 1 —kj il —kirplj —1j ikl
=K A ((IbC) {ch Tad + Uchad + UbaTdc - 5 Vel Tab + Vel Tab + Uachb )

ijk abc —
S i
Val = Vg Val»

ijk
ijk __ Kabc
abc T

€ T € T € — € — € — €

i (2.49)
Kl‘;l}—f and T;{,]g (and the spin-flipped counterparts) are calculated for a triangular set of
first two indices i < j (with j =2 : n,),
KA — K = A(ab) {uf8T5) + ol + T8 + o338 1 TS — i
ik il ikl ik il ikrlj
_Uzl‘ T — U;ZTgE} - vlja Ty — vge Ta{ﬂ (2.50)
T
ik _ K
b e bt — €a— € — €2
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The (T) correction contains additionally the following terms,

E(T) = E[T] + Z |: TZJkTTa TZJkTTb+ abTUkTTC

abc abc abc

i<j<k
1
vy (Tt 4 e T )
+ Z [ bcT(%fTTa acTéilzTTb_‘_ abTLZLiICfTTC (251)

i<jik
—f-T;Tbckafa + TviTacTZkab + TTasz]kfk:|

abc abc abc

+ spin-flipped terms.

In case of AUCCSD(T), K% and T* etc are different from K¢t and T9* and
can be calculated by replacing amphtudes Wlth Lagrange multipliers (and integrals with
transpose integrals) in the above equations,

1
K = A(abe) {UdkAad v A+ vgi ATk — 5 (U5AT + oAy _‘-’}/\Zﬁ’)} )
K = A (ab) {UggAgd AT oA Ay e el A (2.52)
bl al be lc Aa lc
—Up i — viEh; } - UjEAil VgAY

and the conjugate-transpose of the amplitudes in Eq. (2.51) are replaced with the Lagrange
multipliers.



Chapter 3

Two determinant coupled cluster

Amplitudes are normal ordered with respect to the formal reference with two active or-
bitals ¢ and w. The occupied (i,7,...) and virtual (a,b,...) spaces do not contain the
active orbitals. The equations follow the equations presented in Ref.[5]. Differences be-
cause of fixed typos or other reasons are coloured blue. Terms we have added to ensure
energy invariance with respect to the reference choice and which are not explicitly listed
in Ref.[5] are coloured magenta. Terms we have added to ensure proper antisymmetry
and which are not explicitly listed in Ref.[5] are coloured green. IAS terms, which are
terms including the all internal singles, are coloured browmn.
Ry = (0| Hye™ [0 — ((A04]e™ P} (0| Aye™|*0))

a —

= (AP} | Hye™ |2 ®) e + MIW =0, (3.1)

Riy = (O3 Hye ™ ®)c — ({0517 P0) ("Bl Hye™ D) )
— Alijsab) [(A0Lle™ @) ((*0fle™ |Po) (Tl Ay D))
— R(ia) ("} ") ((*@]|e"|P0) (Po| Hye™ [ 0)) |
= (40U | Hye ™ [A®) ¢ + MW = 0, (3.2)

The operator R(ia) excludes the active orbitals from the corresponding orbital spaces.
The following intermediates are used:

TCZ; - Ti - T?ﬁ7 (33)
=TI T 3.4

ﬂ
SR

Ty +T,17.

14
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The singles M tensor is built as follows,

M

ME —
MP =

M,
M
M
MY

ot

ut?
=TT},
— Tt
= -T!T!

U a?

= IO + TiTE

w t - ua’

_ T/ Tﬁl

u=at

= 77T

(¥ a

=TT+ ToT

a”ut at

it
=171

au’

— 7}17 TTT/'

Tauw?

_ U
=T"

15
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The all alpha part of the doubles part is built as follows,

M, =A(i5) T + A(if) T T3,

M =T'TY,

M, =—A(ij) 74T — A(ij) T{T33,

MY =—T'TY,

MY =A(ab) TiT + A (ab) Tl—?TZZ,

MY, =TUTE,

M =—A(ab) 775 — A(ab) T3 T2,

M =TI,

M = — A(ijsab) 7 (T35 + /Tl ) — A (ij;ab) (T TS)
— A T = Alab) TET = A (i]:ab) TIT{ T,

MY =—A(ij;ab) 7. (1,1*; + 1‘;1;%7)
—A(ij) T,T] Ty — A(ab) T,T;'T;,

M}, =— T,

MY, =T},

M, =Ti,

M, =—Ti,

Mt =—7IT!,

M =+7iT,

MY =47t

A [1‘/’ :7777—4‘

uQ

a-u*

16

The all beta part of the doubles M tensor is obtained from the all alpha part analogously
to the presented singles M tensor.
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The alpha beta part is calculated as follows,

M}, = — 7Tl — TITl — Tirl; — TiT4, (3.40)
M =TiT%, (3.41)
M2 =—7] T — TITiE — Ti7ls — TUTS, (3.42)
M =TT, (3.43)
MY, =T + Ty Ton + Tirgy + T2 T, (3.44)
Mg =—T,T;3, (3.45)
My =n T + T T + Tirly + TATY, (3.46)
My ==T¢'Ty;, (3.47)

M = — 7 (T8 + TiTE) (T T + T )
+TTITY + TITITE — TITETS — TiTI T
— TS+ T+ THT + T T

t

+ TS —TTE — TRT)T — T, (3.48)
MY == Ty T3 — 7 TE T, + Ty T + T T T

+HIFTLT) + TETITR, (3.49)
M =T7, (3.50)
M =T, (3.51)
M =7t (3.52)
Mi® =7t (3.53)
Ml =7t (3.54)
Mg =Ta, (3.55)
M =Tt (3.56)
M =—T" (3.57)
M =—1i, (3.58)
M= s (3.59)

The effective Hamiltonian W is just the all active part of the residuum,
W = R'™. (3.60)

The all internal doubles T coupled cluster amplitude is set to zero at the beginning of
every iteration. At the end of every iteration the all internal doubles residuum R'% is set
to zero.
IAS contribution to the energy,

AFEns = —WHTITE, (3.61)

ut
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