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Chapter 1

Introduction

1.1 General

In this document we collect the equations and derivations for methods implemented in the
ElemCo.jl package. The final goal is to have a document which can be used as a reference
for the equations and derivations. The final equations should also be contained in the
code as docstrings or copied to the corresponding Markdown files.

1.2 Notation

We use the following notation throughout the document.
The virtual orbitals are denoted by a, b, c, . . ., the occupied orbitals by i, j, k, . . ., the

active (open-shell) orbitals by t, u, v, . . ., and the general orbital indices are denoted by
p, q, r, s. The Einstein summation convention is used for repeated indices (repeated lower
and upper indices are summed over). The α and β spin orbitals are denoted by p and p̄.

The integrals are not antisymmetrized and denoted by vrspq, where p, q, r, s are indices
of orbitals, and the lower indices correspond to the creation and the upper indices to the
annihilation operators in the Hamiltonian,

ĤN = f q
p

{
â†pâq

}
N
+

1

2
vrspq

{
â†pâ

†
qâsâr

}
N
, (1.1)

i.e., f q
p = ⟨p|f̂ |q⟩ and vrspq = ⟨pq|rs⟩.

Permutation operators:
P (ab)X ij

ab = X ij
ba

P (ab ) ba)X ij
ab = X ij

ba

(1.2)

Symmetrization operators:

S (ab)X ij
ab = X ij

ab +X ij
ba

S (ab, ij)X ij
ab = X ij

ab +Xji
ba

(1.3)

Antisymmetrization operators:

A (ab)X ij
ab = X ij

ab −X ij
ba

A (ab; ij)X ij
ab = X ij

ab −Xji
ab −X ij

ba +Xji
ba

(1.4)
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Chapter 2

CCSD and DCSD amplitude and Λ
equations

2.1 Closed-shell CCSD/DCSD Lagrangian

The singles-dressed factorization of the closed-shell CCSD and DCSD amplitude equa-
tions roughly follows the factorization from Ref. [1]. The closed-shell CCSD and DCSD
Lagrangian is given by

L = vcdkl T̃
kl
cd +

(
f̂ c
k + f c

k

)
T k
c + Λab

ij v̂
ij
ab + Λab

ij

(
v̂ijkl+vcdklT

ij
cd

)
T kl
ab + Λab

ij v̂
cd
abT

ij
cd

+Λab
ij v

cd
klT

kj
adT

il
cb

+ Λab
ij S (ab, ij)

{(
f̂ c
a − 2×1

2
vcdkl T̃

kl
ad

)
T ij
cb −

(
f̂ i
k + 2×1

2
vcdkl T̃

il
cd

)
T kj
ab

+

(
v̂idal +

1

2
vcdkl T̃

ik
ac

)
T̃ lj
db − v̂ickaT

kj
cb − v̂ickbT

kj
ac−vcdklT

ki
da

(
T lj
cb − T lj

bc

)}
+ Λa

i f̂
i
a + Λa

i f̂
b
j T̃

ij
ab + Λa

i v̂
bc
akT̃

ki
cb − Λa

i v̂
ic
jkT̃

kj
ca .

(2.1)

The DCSD Lagrangian is obtained by removing terms in red.
Integrals with hats are dressed integrals, i.e. they are obtained by dressing the integrals

with the singles amplitudes, and the Fock matrix is internally dressed, too, e.g.,

v̂idkl = vidkl + vcdklT
i
c

v̂ijal = vijal − vijklT
k
a

f̂ c
k = hc

k + 2v̂clkl − v̂cllk = f c
k +

(
2vcdkl − vcdlk

)
T l
d.

(2.2)

Note that only the lower virtual and upper occupied indices are dressed.
The amplitude equations can be obtained by taking the derivative of the Lagrangian

with respect to the Lagrange multipliers Λ and setting the result to zero.
The most efficient version of CCSD/DCSD in ElemCo.jl combines the dressed factor-
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CHAPTER 2. CCSD AND DCSD AMPLITUDE AND Λ EQUATIONS 4

ization from above with the cckext type of factorization from Ref. [2] and is given by

L = vcdkl T̃
kl
cd +

(
f̂ c
k + f c

k

)
T k
c + Λab

ij

(
v̂ijkl+vcdklT

ij
cd

)
T kl
ab + Λab

ijK
ij
pqδ

p
aδ

q
b

+Λab
ij v

cd
klT

kj
adT

il
cb

+ Λab
ij S (ab, ij)

{(
f̂ c
a − 2×1

2
vcdkl T̃

kl
ad

)
T ij
cb −

(
f̂ i
k + 2×1

2
vcdkl T̃

il
cd

)
T kj
ab

+

(
v̂idal +

1

2
vcdkl T̃

ik
ac

)
T̃ lj
db − v̂ickaT

kj
cb − v̂ickbT

kj
ac−vcdklT

ki
da

(
T lj
cb − T lj

bc

)
−Kij

pq

(
δpkδ

q
b −

1

2
δpkδ

q
l T

l
b

)
T k
a

}
+ Λa

iK
ij
pq

(
2δpaδ

q
j − δpj δ

q
a

)
− Λa

i T
k
aK

ij
pq

(
2δpkδ

q
j − δpj δ

q
k

)
+ Λa

i ĥ
i
a + Λa

i f̂
b
j T̃

ij
ab − Λa

i v̂
ic
jkT̃

kj
ca ,

(2.3)

where
Kij

pq = vrspq
((
T ij
ab + T i

aT
j
b

)
δar δ

b
s + δirT

j
b δ

b
s + T i

aδ
a
r δ

j
s + δirδ

j
s

)
(2.4)

and h is the one-particle part of the Hamiltonian.

2.2 Closed-shell CCSD/DSCD Lagrangian multipli-

ers equations

The Λ equations are obtained by taking the derivative of the Lagrangian Eq. (2.1) with
respect to the amplitudes and setting the result to zero, i.e.,

∂L
∂Tm

e

= 2
(
2vbejm − vebjm

)
T j
b + 2f e

m − Λeb
ij v̂

ij
mb − Λae

ij v̂
ij
am + Λab

mj v̂
ej
ab + Λab

imv̂
ie
ab

+ Λab
mj v̂

ej
klT

kl
ab + Λab

imv̂
ie
klT

kl
ab − Λeb

ij v̂
cd
mbT

ij
cd − Λae

ij v̂
cd
amT

ij
cd

− Λeb
ij f̂

d
mT

ij
db − Λae

ij f̂
d
mT

ij
ad − Λab

mj f̂
e
kT

kj
ab − Λab

imf̂
e
kT

ik
ab

+ Λab
ij S (ab, ij)

{(
2v̂deam − v̂edam

)
T ij
db −

(
2v̂iekm − v̂eikm

)
T kj
ab

}
− Λeb

ij v̂
id
mlT̃

lj
db − Λae

ij v̂
jd
mlT̃

il
ad + Λab

mj v̂
ed
al T̃

lj
db + Λab

imv̂
ed
bl T̃

il
ad

+ Λeb
ij v̂

ic
kmT

kj
cb − Λab

mj v̂
ec
kaT

kj
cb + Λae

ij v̂
jc
kmT

ik
ac − Λab

imv̂
ec
kbT

ik
ac

+ Λae
ij v̂

ic
kmT

kj
ac − Λab

mj v̂
ec
kbT

kj
ac + Λeb

ij v̂
jc
kmT

ik
cb − Λab

imv̂
ec
kaT

ik
cb

− Λe
i f̂

i
m + Λa

mf̂
e
a + Λa

i

(
2v̂ieam − v̂eiam

)
+ Λa

i

(
2vbejm − vebjm

)
T̃ ij
ab − Λe

iv
bc
mkT̃

ki
cb − Λa

mv
ec
jkT̃

kj
ca .

(2.5)
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∂L
∂Tmn

ef

=
1

2
S (ef,mn)

[
Λe

mf̂
f
n ṽ

ef
mn + Λef

ij

(
v̂ijmn+vcdmnT

ij
cd

)
+Λab

mnv
ef
kl T

kl
ab + Λab

mnv̂
ef
ab

+Λeb
inv

cf
mlT

il
cb + Λaf

mjv
ed
knT

kj
ad

+ Λaf
mnS (af,mn)

(
f̂ e
a − 2×1

2
vedkl T̃

kl
ad

)
− Λeb

ijS (eb, ij) 2×1

2
ṽcfmnT

ij
cb

− Λef
inS (ef, in)

(
f̂ i
m + 2×1

2
vcdmlT̃

il
cd

)
− Λab

mjS (ab,mj) 2×1

2
ṽefknT

kj
ab

+ 2Λaf
inS (af, in)

(
v̂ieam +

1

2
vcekmT̃

ik
ac

)
− Λaf

imS (af, im)

(
v̂iean +

1

2
vceknT̃

ik
ac

)
+ 2Λeb

mjS (eb,mj)
1

2
vfdnl T̃

lj
db − Λeb

njS (eb, nj)
1

2
vfdmlT̃

lj
db

− Λaf
inS (af, in) v̂iema − Λeb

inS (eb, in) v̂ifmb

−Λfb
njS (fb, nj) vceml

(
T lj
cb − T lj

bc

)
− Λaf

inS (af, in) vedkmT
ki
da

+Λae
inS (ab, ij) vfdkmT

ki
da

+ T (mn)
{
Λe

mf̂
f
n + Λa

nv̂
fe
am − Λf

i v̂
ie
nm

}]
,

(2.6)

with a “contravariation” operator,

T (mn)Xef
mn = 2Xef

mn −Xef
nm. (2.7)

Now we can introduce useful intermediate quantities, related to the density matrices.
The one-body reduced density matrices can be written as

Dj
i = −2Λcd

ikT
jk
cd ,

Db
a = 2Λbc

klT
kl
ac ,

Da
i = Λa

i ,

Di
a = Λc

kT̃
ik
ac .

(2.8)

Note that we have excluded here terms coming from the singles amplitudes. Thus, if
this density matrix is used to calculate properties, the corresponding integrals should be
dressed. Alternatively, one can define “dressed” density matrices which include the singles
contributions,

D̂j
i = Dj

i −Dc
iT

j
c ,

D̂b
a = Db

a +Db
kT

k
a ,

D̂a
i = Da

i ,

D̂i
a = Di

a + 2T i
a −Dc

aT
i
c + D̂i

kT
k
a .

(2.9)

Some parts of the two-body reduced density matrices can be written as

Dkl
ij = Λcd

ij T
kl
cd

Daj
ib = Λac

ik T̃
kj
cb

D̄aj
ib = Λac

ikT
kj
cb + Λca

ikT
kj
bc

(2.10)
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Finally, we define the following quantities which correspond to the cckext factorization
and a doubles-dressing of the Fock matrix,

Krs
mn = Λ̂pq

mnv
rs
pq

Λ̂pq
mn = Λab

mnδ
p
aδ

q
b − Λab

mnT
i
aδ

p
i δ

q
b − Λab

mnδ
p
aT

j
b δ

q
j + Λab

mnT
i
aT

j
b δ

p
i δ

q
j

xi
m = T̃ il

cdv
cd
ml xe

a = T̃ kl
acv

ec
kl

(2.11)

With these definitions, the Λ equations can be written as

∂L
∂Tm

e

=
(
2vpeqm − vepqm

)
D̂q

p + 2f e
m − 2Λeb

ij v̂
ij
mb + 2Krs

mjδ
e
r

(
δjs + δbsT

j
b

)
+ 2Dkl

mj v̂
ej
kl − 2Λeb

ij

(
v̂cdmbT

ij
cd

)
−De

df̂
d
m +Dk

mf̂
e
k − 2Del

idv̂
id
ml + 2Dal

mdv̂
ed
al

+ 2D̄ek
ic v̂

ic
km − 2D̄ak

mcv̂
ec
ka − Λe

i f̂
i
m + Λa

mf̂
e
a − Λe

ix
i
m − Λa

mx
e
a.

(2.12)

∂L
∂Tmn

ef

= ṽefmn + Λef
ij

(
v̂ijmn+vcdmnT

ij
cd

)
+Dkl

mnv
ef
kl +Krs

mnδ
e
rδ

f
s

+ S (ef,mn)

{
Λaf

mn

(
f̂ e
a − 2×1

2
xe
a

)
− Λef

in

(
f̂ i
m + 2×1

2
xi
m

)
+ T (mn)

[
2×1

4
vefknD

k
m − 2×1

4
vcfmnD

e
c + Λaf

in

(
v̂ieam + vcekmT̃

ik
ac

)
+
1

2

(
Λe

mf̂
f
n + Λa

nv̂
fe
am − Λf

i v̂
ie
nm

)]
−Λaf

in v̂
ie
ma − Λeb

inv̂
if
mb−Dfl

ncv
ce
ml + D̄ek

ndv
fd
km

}
.

(2.13)

2.3 Perturbative triples for closed-shell CCSD

The perturbative triples equations for CCSD are given by

E[T ] =
∑
i≤j≤k

p(i, j, k)Kabc
ijkX

ijk
abc

p(i, j, k) =

2 i ̸= j ̸= k
1 i = j ⊕ j = k
0 i = j = k

(2.14)

X ijk
abc and Kabc

ijk are calculated for the triangular set of indices i ≤ j ≤ k (with k = 1 : nocc),

Kabc
ijk = Kijk

abc = vdkbc T
ij
ad + vdkacT

ij
db + vdjcbT

ik
ad + vdjabT

ik
dc + vdicaT

jk
bd + vdibaT

jk
dc

− vjklc T
li
ba − viklc T

lj
ab − vkjlb T

li
ca − vijlbT

lk
ac − vkilaT

lj
cb − vjilaT

lk
bc

X ijk
abc =

4Kijk
abc − 2Kijk

acb − 2Kijk
cba − 2Kijk

bac +Kijk
cab +Kijk

bca

ϵi + ϵj + ϵk − ϵa − ϵb − ϵc

(2.15)

The (T) correction contains additionally the following terms,

E(T ) = E[T ] +
∑
i≤j≤k

p(i, j, k)
[
vbcjkX

ijk
abcT

†a
i + vacikX

ijk
abcT

†b
j + vabij X

ijk
abcT

†c
k

+T †bc
jk X ijk

abcf
a
i + T †ac

ik X ijk
abcf

b
j + T †ab

ij X ijk
abcf

c
k

]
.

(2.16)
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In case of ΛCCSD(T)Kabc
ijk is different fromKijk

abc and is calculated using the Lagrange
multipliers,

Kabc
ijk = vbcdkΛ̄

ad
ij + vacdkΛ̄

db
ij + vcbdj Λ̄

ad
ik + vabdj Λ̄

dc
ik + vcadi Λ̄

bd
jk + vbadi Λ̄

dc
jk

− vlcjkΛ̄
ba
li − vlcikΛ̄

ab
lj − vlbkjΛ̄

ca
li − vlbijΛ̄

ac
lk − vlakiΛ̄

cb
lj − vlaji Λ̄

bc
lk,

(2.17)

where Λ̄ab
ij are the covariant Lagrange multipliers,

Λ̄ab
ij =

2

3
Λab

ij +
1

3
Λba

ij . (2.18)

Additionally, the conjugate-transposed amplitudes in Eq. (2.16) are replaced by the co-
variant Lagrange multipliers Λ̄ab

ij and Λ̄a
i =

1
2
Λa

i .

2.4 Open-shell CCSD/DSCD Lagrangian

The factorization of the open-shell CCSD/DCSD amplitude equations roughly follows
the factorization of the closed-shell equations, Sec. 2.1. The open-shell CCSD and DCSD
Lagrangian – i.e., spin dependent – is given by

L = Lα + Lβ + Lαβ, (2.19)

Lα =
1

2

[
vcdklT

kl
cd +

(
f̂ c
k + f c

k

)
T k
c

]
+

1

4
Λab

ij

(
v̂ijab − v̂jiab

)
+

1

4
Λab

ij

(
v̂ijkl+

1

2
vcdklT

ij
cd

)
T kl
ab

+
1

4
Λab

ij v̂
cd
abT

ij
cd +

1

4
Λab

ij S (ab, ij)
{
x̂c
aT

ij
cb − x̂i

kT
kj
ab

}
+

1

4
Λab

ijA (ab; ij)
{(

v̂idal − v̂dial + x̄id
al

)
T lj
db +

(
v̂id̄al̄ + xid̄

al̄

)
T jl̄

bd̄

}
+ Λa

i v̂
cd
alT

il
cd + Λa

i v̂
cd̄
al̄T

il̄
cd̄ − Λa

i v̂
ic
jkT

jk
ac − Λa

i v̂
ic̄
jk̄T

jk̄
ac̄

+ Λa
i f̂

i
a + Λa

i f̂
b
jT

ij
ab + Λa

i f̂
b̄
j̄T

ij̄

ab̄
,

(2.20)

or using the cckext factorization,

Lα =
1

2

[
vcdklT

kl
cd +

(
f̂ c
k + f c

k

)
T k
c

]
+

1

4
Λab

ij

(
v̂ijkl+

1

2
vcdklT

ij
cd

)
T kl
ab

+
1

4
Λab

ijK
ij
pq

(
δpa − δpkT

k
a

) (
δqb − δql T

l
b

)
+

1

4
Λab

ij S (ab, ij)
{
x̂c
aT

ij
cb − x̂i

kT
kj
ab

}
+

1

4
Λab

ijA (ab; ij)
{(

v̂idal − v̂dial + x̄id
al

)
T lj
db +

(
v̂id̄al̄ + xid̄

al̄

)
T jl̄

bd̄

}
+ Λa

i

(
Kij

pqδ
q
j +Kij̄

pq̄δ
q̄
j̄

) (
δpa − δpkT

k
a

)
− Λa

i v̂
ic
jkT

jk
ac − Λa

i v̂
ic̄
jk̄T

jk̄
ac̄

+ Λa
i ĥ

i
a + Λa

i f̂
b
jT

ij
ab + Λa

i f̂
b̄
j̄T

ij̄

ab̄
;

(2.21)

Lβ is obtained from Lα by flipping the spins;

Lαβ = vcd̄kl̄T
kl̄
cd̄ + Λab̄

ij̄ v̂
ij̄

ab̄
+ Λab̄

ij̄

(
v̂ij̄
kl̄
+vcd̄kl̄T

ij̄

cd̄

)
T kl̄
ab̄ + Λab̄

ij̄ v̂
cd̄
ab̄T

ij̄

cd̄

+ Λab̄
ij̄

{
x̂c
aT

ij̄

cb̄
+ x̂d̄

b̄T
ij̄

ad̄
− x̂i

kT
kj
ab − x̂j̄

l̄
T il̄
ab̄

}
+ Λab̄

ij̄

{(
v̂idal − v̂dial + xid

al + x̄id
al

)
T lj̄

db̄
+
(
v̂j̄d̄
b̄l̄
− v̂d̄j̄

b̄l̄
+ 2xj̄d̄

b̄l̄

)
T il̄
ad̄

+
(
v̂id̄al̄ + vcd̄kl̄T

ik
ac

)
T l̄j̄

d̄b̄
+ v̂dj̄

lb̄
T il
ad − v̂cj̄

ak̄
T ik̄
cb̄ −

(
v̂id̄kb̄−vcd̄kl̄T

il̄
cb̄

)
T kj̄

ad̄

}
,

(2.22)
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or using the cckext factorization,

Lαβ = vcd̄kl̄T
kl̄
cd̄ + Λab̄

ij̄

(
v̂ij̄
kl̄
+vcd̄kl̄T

ij̄

cd̄

)
T kl̄
ab̄ + Λab̄

ij̄K
ij̄
pq̄

(
δpa − δpkT

k
a

) (
δq̄
b̄
− δq̄

l̄
T l̄
b̄

)
+ Λab̄

ij̄

{
x̂c
aT

ij̄

cb̄
+ x̂d̄

b̄T
ij̄

ad̄
− x̂i

kT
kj̄

ab̄
− x̂j̄

l̄
T il̄
ab̄

}
+ Λab̄

ij̄

{(
v̂idal − v̂dial + xid

al + x̄id
al

)
T lj̄

db̄
+
(
v̂j̄d̄
b̄l̄
− v̂d̄j̄

b̄l̄
+ 2xj̄d̄

b̄l̄

)
T il̄
ad̄

+
(
v̂id̄al̄ + vcd̄kl̄T

ik
ac

)
T l̄j̄

d̄b̄
+ v̂dj̄

lb̄
T il
ad − v̂cj̄

ak̄
T ik̄
cb̄ −

(
v̂id̄kb̄−vcd̄kl̄T

il̄
cb̄

)
T kj̄

ad̄

}
.

(2.23)

The intermediate quantities are defined as follows,

Kij
pq = vrspqD

ij
rs Kij̄

pq̄ = vrs̄pq̄D
ij̄
rs̄

Dij
rs =

(
T ij
ab + T i

aT
j
b − T i

bT
j
a

)
δar δ

b
s +A (ij; rs) δirT

j
b δ

b
s + δirδ

j
s − δisδ

j
r

Dij̄
rs̄ =

(
T ij̄

ab̄
+ T i

aT
j̄

b̄

)
δar δ

b̄
s̄ + δirT

j̄

b̄
δb̄s̄ + T i

aδ
a
sδ

j̄
s̄ + δirδ

j̄
s̄

xid
al =

1

2
T ik
ac

(
vcdkl−vdckl

)
x̄id
al = xid

al + T ik̄
ac̄v

dc̄
lk̄

xid̄
al̄ =

1

2
T ik̄
ac̄

(
vc̄d̄k̄l̄−vd̄c̄k̄l̄

)
x̂i
k = f̂ i

k + 2×1

2

(
vcdklT

il
cd + vcd̄kl̄T

il̄
cd̄

)
x̂c
a = f̂ c

a − 2×1

2

(
vcdklT

kl
ad + vcd̄kl̄T

kl̄
ad̄

)

(2.24)

2.4.1 Spin-restricted open-shell CCSD/DSCD

The spin-restricted versions rccsd and rdcsd are obtained through spin-projection of the
residuals and amplitudes from the spin-dependent equations in each iteration. [3, 4]

In this section we use the following notation:

ααT ij
ab = T ij

ab,

ββT ij
ab = T īj̄

āb̄
,

αβT ij
ab = T ij̄

ab̄
,

(2.25)

and the spin-projected amplitudes are denoted by a bar, e.g., αβT̄ ij
ab. Moreover, the

indices i, j, . . . run in the following part of the section over the closed-shell part of occupied
orbitals, a, b, . . . over the (doubly) virtual orbitals, and t, u, . . . over the singly occupied
(or singly-virtual) orbitals.

The “closed-shell” part of spin-projected αβ amplitudes is given by

αβT̄ ij
ab =

1

6
( ααT ij

ab +
ββT ij

ab + 2 αβT ij
ab +

αβT ij
ba + 2 αβT ji

ba +
αβT ji

ab) (2.26)

The “open-shell” part of spin-projected αβ amplitudes is given by

αβT̄ ij
at =

1

3
( ββT ij

at + 2 αβT ij
at +

αβT ji
at)

αβT̄ tj
ab =

1

3
( ααT tj

ab + 2 αβT tj
ab +

αβT tj
ba)

αβT̄ tj
au = αβT tj

au +
δtu

2ms + 2

(
βT j

a − αT j
a − αβT vj

av

) (2.27)
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The projection corrections for the remaining amplitudes are defined in terms of the new
spin-projected αβ amplitudes as follows. For singles amplitudes,

αT̄ i
a =

1

2

(
αT i

a +
βT i

a − αβT̄ vi
av

)
,

βT̄ i
a =

1

2

(
αT i

a +
βT i

a +
αβT̄ vi

av

)
,

αT̄ t
a = αT t

a and βT̄ i
t =

βT i
t .

(2.28)

For the αα and ββ amplitudes,

σσT̄ ij
ab =

αβT̄ ij
ab −

αβT̄ ij
ba,

ααT̄ tj
ab =

ααT̄ jt
ba = αβT̄ tj

ab −
αβT̄ tj

ba,
ββT̄ ij

at =
ββT̄ ji

ta = αβT̄ ij
at − αβT̄ ji

at ,
ααT̄ tu

ab = ααT tu
ab and ββT̄ ij

tu = ββT ij
tu.

(2.29)

2.5 Open-shell CCSD/DSCD Lagrangian multipliers

equations

The Lagrange multipliers equations for the open-shell CCSD/DSCD Lagrangian can be
obtained by taking the derivatives with respect to the amplitudes and setting them to
zero.

∂Lα

∂Tm
e

= (vcekm − veckm)T
k
c +

1

2
vec̄mk̄T

k̄
c̄ + f e

m − Λeb
ij v̂

ij
mb + Λab

mj v̂
ej
ab +

1

4
Λab

mj v̂
ej
klT

kl
ab

+
1

4
Λab

imv̂
ie
klT

kl
ab −

1

4
Λeb

ij v̂
cd
mbT

ij
cd −

1

4
Λae

ij v̂
cd
amT

ij
cd −

1

2
Λeb

ij f̂
c
mT

ij
cb −

1

2
Λab

mj f̂
e
kT

kj
ab

+
1

2
Λab

ij

{
(v̂ceam − v̂ecam)T

ij
cb −

(
v̂iekm − v̂iemk

)
T kj
ab

}
− Λeb

ij v̂
id
mlT

lj
db + Λab

mj v̂
ed
al T

lj
db + Λeb

ij v̂
di
mlT

lj
db

− Λab
mj v̂

de
al T

lj
db − Λeb

ij v̂
id̄
ml̄T

jl̄

bd̄
+ Λab

mj v̂
ed̄
al̄ T

jl̄

bd̄

− Λe
iv

cd
mlT

il
cd − Λe

iv
cd̄
ml̄T

il̄
cd̄ − Λa

mv̂
ec
jkT

jk
ac − Λa

mv̂
ec̄
jk̄T

jk̄
ac̄

− Λe
i f̂

i
m + Λa

mf̂
e
a + Λa

i

(
v̂ieam − v̂eiam

)
+ Λa

i

(
vbejm − vebjm

)
T ij
ab + Λa

i v
eb̄
mj̄T

ij̄

ab̄

(2.30)

∂Lβ

∂Tm
e

=
1

2
vec̄mk̄T

k̄
c̄ +

1

2
Λāb̄

īj̄

{
v̂ec̄māT

īj̄

c̄b̄
− v̂ēimk̄T

k̄j̄

āb̄

}
+ Λā

ī v̂
ēi
mā + Λā

ī v
eb̄
mj̄T

īj̄

āb̄
+ Λā

ī

(
vebmj − vbemj

)
T jī
bā,

(2.31)

∂Lαβ

∂Tm
e

= −Λeb̄
ij̄ v̂

ij̄

mb̄
+ Λab̄

mj̄ v̂
ej̄

ab̄
+ Λab̄

mj̄ v̂
ej̄

kl̄
T kl̄
ab̄ − Λeb̄

ij̄ v̂
cd̄
mb̄T

ij̄

cd̄

− Λeb̄
ij̄ f̂

c
mT

ij̄

cb̄
− Λab̄

mj̄ f̂
e
kT

kj̄

ab̄

+ Λab̄
ij̄

{
(v̂ceam − v̂ecam)T

ij̄

cb̄
+ v̂ed̄mb̄T

ij̄

ad̄
−
(
v̂iekm − v̂iemk

)
T kj̄

ab̄
− v̂ej̄

ml̄
T il̄
ab̄

}
− Λeb̄

ij̄ v̂
id
mlT

lj̄

db̄
+ Λab̄

mj̄ v̂
ed
al T

lj̄

db̄
+ Λeb̄

ij̄ v̂
di
mlT

lj̄

db̄
− Λab̄

mj̄ v̂
de
al T

lj̄

db̄

− Λeb̄
ij̄ v̂

id̄
ml̄T

l̄j̄

d̄b̄
+ Λab̄

mj̄ v̂
ed̄
al̄ T

l̄j̄

d̄b̄
+ Λeb̄

ij̄ v̂
cj̄

mk̄
T ik̄
cb̄ − Λab̄

mj̄ v̂
ed̄
kb̄T

kj̄

ad̄
,

(2.32)
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The corresponding equations for the derivatives with respect to the β amplitudes are
obtained by flipping the spins.

Derivatives with respect to doubles amplitudes are given by

4
∂Lα

∂Tmn
ef

= A (ef ;mn)

[
1

2
vefmn +

1

4
Λef

ij

(
v̂ijmn+

1

2
vcdmnT

ij
cd

)
+
1

8
Λab

mnv
ef
kl T

kl
ab

+
1

4
Λab

mnv̂
ef
ab +

1

2
Λaf

mnx̂
e
a −

1

2
Λef

in x̂
i
m − 2×1

4
Λeb

ij v
cf
mnT

ij
cb − 2×1

4
Λab

mjv
ef
knT

kj
ab

+ Λaf
in

(
v̂ieam − v̂eiam + x̄ie

am

)
+

1

2
Λeb

mj

(
vfdnl −vdfnl

)
T lj
db

+Λa
mv̂

ef
an − Λe

i v̂
if
mn + Λe

mf̂
f
n

]
,

(2.33)

∂Lβ

∂Tmn
ef

= 0, (2.34)

4
∂Lαβ

∂Tmn
ef

= A (ef ;mn)

[
−2×1

2
Λeb̄

ij̄ v
cf
mnT

ij̄

cb̄
− 2×1

2
Λab̄

mj̄v
ef
knT

kj̄

ab̄

+Λeb̄
mj̄

(
vfdnl −vdfnl

)
T lj̄

db̄
+ Λeb̄

mj̄v
fd̄

nl̄
T l̄j̄

d̄b̄
+ Λeb̄

mj̄ v̂
f j̄

nb̄

]
,

(2.35)

∂Lα

∂Tmn̄
ef̄

= −2×1

4
Λeb

ij v
cf̄
mn̄T

ij
cb − 2×1

4
Λab

mjv
ef̄
kn̄T

kj
ab

+ Λeb
mjv

df̄
ln̄ T

lj
db + Λae

im

(
v̂if̄an̄ + xif̄

an̄

)
+

1

2
Λeb

mj

(
vf̄ d̄
n̄l̄
−vd̄f̄

n̄l̄

)
T jl̄

bd̄

+ Λa
mv̂

ef̄
an̄ − Λe

i v̂
if̄
mn̄ + Λe

mf̂
f̄
n̄ ,

(2.36)

∂Lβ

∂Tmn̄
ef̄

= −2×1

4
Λf̄ b̄

īj̄
vec̄mn̄T

īj̄

c̄b̄
− 2×1

4
Λāb̄

n̄j̄v
ef̄

mk̄
T k̄j̄

āb̄

+ Λf̄ b̄
n̄j̄
ved̄ml̄T

l̄j̄

d̄b̄
+ Λāf̄

īn̄

(
v̂ēimā + xīe

ām

)
+

1

2
Λf̄ b̄

n̄j̄

(
vedml−vdeml

)
T lj̄

db̄

+ Λā
n̄v̂

f̄e
ām − Λf̄

ī
v̂īen̄m + Λf̄

n̄f̂
e
m,

(2.37)

∂Lαβ

∂Tmn̄
ef̄

= vef̄mn̄ + Λef̄
ij̄

(
v̂ij̄mn̄+vcd̄mn̄T

ij̄

cd̄

)
+Λab̄

mn̄v
ef̄

kl̄
T kl̄
ab̄ + Λab̄

mn̄v̂
ef̄

ab̄

+ Λaf̄
mn̄x̂

e
a − 2×1

2
Λeb̄

ij̄ v
cf̄
mn̄T

ij̄

cb̄
+ Λeb̄

mn̄x̂
f̄

b̄
− 2×1

2
Λaf̄

ij̄
ved̄mn̄T

ij̄

ad̄

− Λef̄
in̄ x̂

i
m − 2×1

2
Λab̄

mj̄v
ef̄
kn̄T

kj̄

ab̄
− Λef̄

mj̄
x̂j̄
n̄ − 2×1

2
Λab̄

in̄v
ef̄

ml̄
T il̄
ab̄

+ Λaf̄
in̄

(
v̂ieam − v̂eiam + xie

am + x̄ie
am

)
+ Λeb̄

mj̄v
df̄
ln̄ T

lj̄

db̄
+ Λeb̄

mj̄

(
v̂j̄f̄
b̄n̄

− v̂f̄ j̄
b̄n̄

+ 2xj̄f̄

b̄n̄

)
− Λaf̄

mj̄
v̂ej̄an̄ − Λeb̄

in̄

(
v̂if̄
mb̄
−vcf̄

ml̄
T il̄
cb̄

)
+Λaf̄

mj̄
ved̄kn̄T

kj̄

ad̄
,

(2.38)

and the derivatives with respect to the ββ amplitudes are obtained by flipping the spins.
The one-body reduced density matrix (without singles contributions) is given by

Dj
i = −1

2
Λcd

ikT
jk
cd − Λcd̄

ik̄T
jk̄

cd̄

Db
a =

1

2
Λbc

klT
kl
ac + Λbc̄

kl̄T
kl̄
ac̄

Da
i = Λa

i

Di
a = Λc

kT
ik
ac + Λc̄

k̄T
ik̄
ac̄

(2.39)
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and the β 1RDM is obtained by flipping the spins.
The full (dressed) one-body reduced density matrix is given by

D̂j
i = Dj

i −Dc
iT

j
c ,

D̂b
a = Db

a +Db
kT

k
a ,

D̂a
i = Da

i ,

D̂i
a = Di

a + T i
a −Dc

aT
i
c + D̂i

kT
k
a .

(2.40)

Additionally, we define intermediates related to the two-body reduced density matrix,

Dkl
ij =

1

2
Λcd

ij T
kl
cd

Dkl̄
ij̄ = Λcd̄

ij̄ T
kl̄
cd̄

Daj
ib = Λac

ikT
jk
bc + Λac̄

ik̄T
jk̄
bc̄

D̄aj̄

ib̄
= Λac

ikT
kj̄

cb̄
+ Λac̄

ik̄T
j̄k̄

b̄c̄

(2.41)

and doubles-dressed Fock matrix,

xi
k = vcdklT

il
cd + vcd̄kl̄T

il̄
cd̄

xc
a = vcdklT

kl
ad + vcd̄kl̄T

kl̄
ad̄.

(2.42)

The intermediates for the cckext factorization are given by

Krs
mn = Λ̂pq

mnv
rs
pq

Λ̂pq
mn = Λab

mnδ
p
aδ

q
b − Λab

mnT
i
aδ

p
i δ

q
b − Λab

mnδ
p
aT

j
b δ

q
j + Λab

mnT
i
aT

j
b δ

p
i δ

q
j .

(2.43)

Krs̄
mn̄ and K r̄s̄

m̄n̄ are obtained by flipping the spins.
Finally, we define useful intermediates which can be precalculated and reused in the

equations,
ŷieam = v̂ieam − v̂eiam + x̄ie

am + xie
am

ŷj̄f
b̄n

= vfd̄
nl̄
T l̄j̄

d̄b̄
+ v̂f j̄

nb̄
+ 2xj̄f

b̄n

(2.44)

With these intermediates the equations for the α Lagrange multipliers are given by

∂L
∂Tm

e

=
(
vqepm − veqpm

)
D̂p

q + veq̄mp̄D̂
p̄
q̄ + f e

m − Λeb
ij v̂

ij
mb − Λeb̄

ij̄ v̂
ij̄

mb̄

+Krs
mjδ

e
r

(
δjs + δbsT

j
b

)
+Krs̄

mj̄δ
e
r

(
δj̄s̄ + δb̄s̄T

j̄

b̄

)
+Dkl

mj v̂
ej
kl +Dkl̄

mj̄ v̂
ej̄

kl̄

− 1

2
Λeb

ij

(
v̂cdmbT

ij
cd

)
− Λeb̄

ij̄

(
v̂cd̄mb̄T

ij̄

cd̄

)
−De

c f̂
c
m +Dk

mf̂
e
k

+Del
id

(
v̂diml − v̂dilm

)
+Dal

md

(
v̂edal − v̂deal

)
− D̄el̄

id̄v̂
id̄
ml̄ + D̄al̄

md̄v̂
ed̄
al̄

+ Λeb̄
ij̄ v̂

cj̄

mk̄
T ik̄
cb̄ − Λab̄

mj̄ v̂
ed̄
kb̄T

kj̄

ad̄

− Λe
i f̂

i
m + Λa

mf̂
e
a − Λe

ix
i
m − Λa

mx
e
a

(2.45)
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4
∂L

∂Tmn
ef

= vefmn − vefnm + Λef
ij

(
v̂ijmn+

1

2
vcdmnT

ij
cd

)
+Dkl

mnv
ef
kl +Krs

mnδ
e
rδ

f
s

+ S (ef,mn)
{
Λaf

mnx̂
e
a − Λef

in x̂
i
m

}
+A (ef ;mn)

{
2×1

2
Dk

mv
ef
kn − 2×1

2
De

cv
cf
mn + Λaf

in ŷ
ie
am + Λeb̄

mj̄ ŷ
j̄f

b̄n

+Λa
mv̂

ef
an − Λe

i v̂
if
mn + Λe

mf̂
f
n

}
(2.46)

The equations for the β Lagrange multipliers are obtained by flipping the spins. The
equations for the αβ Lagrange multipliers are given by

∂L
∂Tmn̄

ef̄

= vef̄mn̄ + Λef̄
ij̄

(
v̂ij̄mn̄+vcd̄mn̄T

ij̄

cd̄

)
+Dkl̄

mn̄v
ef̄

kl̄
+Krs̄

mn̄δ
e
rδ

f̄
s̄

+ Λaf̄
mn̄x̂

e
a + Λeb̄

mn̄x̂
f̄

b̄
− Λef̄

in̄ x̂
i
m − Λef̄

mj̄
x̂j̄
n̄

+ 2×1

2

(
Dk

mv
ef̄
kn̄ +Dk̄

n̄v
ef̄

mk̄
−De

cv
cf̄
mn̄ −Df̄

c̄ v
ec̄
mn̄

)
+ Λaf̄

in̄ ŷ
ie
am + Λeb̄

mj̄ ŷ
j̄f̄

b̄n̄
+ Λae

imŷ
if̄
an̄ + Λāf̄

īn̄
ŷīeām

− Λaf̄
mj̄

(
v̂ej̄an̄−ved̄kn̄T

kj̄

ad̄

)
− Λeb̄

in̄

(
v̂if̄
mb̄
−vcf̄

ml̄
T il̄
cb̄

)
+ Λa

mv̂
ef̄
an̄ − Λe

i v̂
if̄
mn̄ + Λe

mf̂
f̄
n̄ + Λā

n̄v̂
f̄e
ām − Λf̄

ī
v̂īen̄m + Λf̄

n̄f̂
e
m.

(2.47)

2.6 Perturbative triples for unrestricted CCSD

The perturbative triples equations for unrestricted CCSD are given by

E[T ] =
1

6

∑
i<j<k

Kabc
ijkT

ijk
abc +

1

6

∑
ī<j̄<k̄

K āb̄c̄
īj̄k̄T

īj̄k̄

āb̄c̄
+

1

2

∑
i<j;k̄

Kabc̄
ijk̄X

ijk̄
abc̄ +

1

2

∑
ī<j̄;k

K āb̄c
īj̄kX

īj̄k

āb̄c
. (2.48)

Kabc
ijk and T ijk

abc (and the all-β-counterparts) are calculated for a triangular set of indices
i < j < k (with k = 3 : nα),

Kabc
ijk = Kijk

abc = A (abc)

{
vdkbc T

ij
ad + vdjcbT

ik
ad + vdibaT

jk
dc − 1

2

(
v̄kjcl T

il
ab + v̄kicl T

lj
ab + v̄ijalT

kl
cb

)}
,

v̄ijal = vijal − vjial,

T ijk
abc =

Kijk
abc

ϵi + ϵj + ϵk − ϵa − ϵb − ϵc
(2.49)

Kabc̄
ijk̄

and T ijk̄
abc̄ (and the spin-flipped counterparts) are calculated for a triangular set of

first two indices i < j (with j = 2 : nα),

Kabc̄
ijk̄ = Kijk̄

abc̄ = A (ab)
{
vdk̄bc̄ T

ij
ad + vdibaT

jk̄
dc̄ + vdjabT

ik̄
dc̄ + vid̄ac̄T

jk̄

bd̄
+ vjd̄bc̄T

ik̄
ad̄ − v̄ijalT

lk̄
bc̄

−vjk̄
bl̄
T il̄
ac̄ − vik̄al̄T

jl̄
bc̄

}
− vjk̄lc̄ T

il
ab − vik̄lc̄ T

lj
ab,

T ijk̄
abc̄ =

Kijk̄
abc̄

ϵi + ϵj + ϵk̄ − ϵa − ϵb − ϵc̄

(2.50)
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The (T) correction contains additionally the following terms,

E(T ) = E[T ] +
∑
i<j<k

[
vbcjkT

ijk
abcT

†a
i + vacikT

ijk
abcT

†b
j + vabij T

ijk
abcT

†c
k

+
1

2

(
T †bc
jk T ijk

abcf
a
i + T †ac

ik T ijk
abcf

b
j + T †ab

ij T ijk
abcf

c
k

)]
+

∑
i<j;k̄

[
vbc̄jk̄T

ijk̄
abc̄T

†a
i + vac̄ik̄T

ijk̄
abc̄T

†b
j + vabij T

ijk̄
abc̄T

†c̄
k̄

+T †bc̄
jk̄

T ijk̄
abc̄f

a
i + T †ac̄

ik̄
T ijk̄
abc̄f

b
j +

1

2
T †ab
ij T ijk̄

abc̄f
c̄
k̄

]
+ spin-flipped terms.

(2.51)

In case of ΛUCCSD(T), Kabc
ijk and T ijk

abc etc are different from Kabc
ijk and T ijk

abc and
can be calculated by replacing amplitudes with Lagrange multipliers (and integrals with
transpose integrals) in the above equations,

Kabc
ijk = A (abc)

{
vbcdkΛ

ad
ij + vcbdjΛ

ad
ik + vbadiΛ

dc
jk −

1

2

(
v̄clkjΛ

ab
il + v̄clkiΛ

ab
lj + v̄alijΛ

cb
kl

)}
,

Kabc̄
ijk̄ = A (ab)

{
vbc̄dk̄Λ

ad
ij + vbadiΛ

dc̄
jk̄ + vabdjΛ

dc̄
ik̄ + vac̄id̄Λ

bd̄
jk̄ + vbc̄jd̄Λ

ad̄
ik̄ − v̄alijΛ

bc̄
lk̄

−vbl̄jk̄Λ
ac̄
il̄ − val̄ik̄Λ

bc̄
jl̄

}
− vlc̄jk̄Λ

ab
il − vlc̄ik̄Λ

ab
lj ,

(2.52)

and the conjugate-transpose of the amplitudes in Eq. (2.51) are replaced with the Lagrange
multipliers.



Chapter 3

Two determinant coupled cluster

Amplitudes are normal ordered with respect to the formal reference with two active or-
bitals t and ū. The occupied (i, j, . . .) and virtual (a, b, . . .) spaces do not contain the
active orbitals. The equations follow the equations presented in Ref.[5]. Differences be-
cause of fixed typos or other reasons are coloured blue. Terms we have added to ensure
energy invariance with respect to the reference choice and which are not explicitly listed
in Ref.[5] are coloured magenta. Terms we have added to ensure proper antisymmetry
and which are not explicitly listed in Ref.[5] are coloured green. IAS terms, which are
terms including the all internal singles, are coloured brown.

Ri
a = ⟨AΦi

a|ĤNe
T̂A|AΦ⟩C −

(
⟨AΦi

a|eT̂B |BΦ⟩⟨BΦ|ĤNe
T̂A|AΦ⟩

)
C

≡ ⟨AΦi
a|ĤNe

T̂A|AΦ⟩C +M i
aW = 0, (3.1)

Rij
ab = ⟨AΦij

ab|ĤNe
T̂A|AΦ⟩C −

(
⟨AΦij

ab|e
T̂B |BΦ⟩⟨BΦ|ĤNe

T̂A|AΦ⟩
)
C

−A (ij; ab)
[
⟨AΦi

a|eT̂A|AΦ⟩
(
⟨AΦj

b|e
T̂B |BΦ⟩⟨BΦ|ĤNe

T̂A|AΦ⟩
)
C

− R̂(ia)⟨BΦi
a|eT̂B |BΦ⟩

(
⟨AΦj

b|e
T̂B |BΦ⟩⟨BΦ|ĤNe

T̂A|AΦ⟩
)
C

]
≡ ⟨AΦij

ab|ĤNe
T̂A|AΦ⟩C +M ij

abW = 0, (3.2)

The operator R̂(ia) excludes the active orbitals from the corresponding orbital spaces.
The following intermediates are used:

τ ia = T i
a − T ī

ā, (3.3)

τ īā = T ī
ā − T i

a, (3.4)

τ ijab = T ij
ab + T i

aT
j
b . (3.5)
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The singles M tensor is built as follows,

M i
u = T t̄i

ut̄, (3.6)

M i
u = T t

uT
ī
t̄ , (3.7)

M t
a = −T tū

uā, (3.8)

M t
a = −T t

uT
ū
ā , (3.9)

M i
a = T ū

ā T
t̄i
ut̄ + T ī

t̄T
tū
uā, (3.10)

M i
a = T t

uT
ūī
āt̄ , (3.11)

M i
a = T t

uT
ū
ā T

ī
t̄ , (3.12)

M t
u = T t

u. (3.13)

M ī
t̄ = T iū

ut̄ , (3.14)

M ī
t̄ = T ū

t̄ T
i
u, (3.15)

M ū
ā = −T tū

at̄ , (3.16)

M ū
ā = −T ū

t̄ T
t
a, (3.17)

M ī
ā = T t

aT
iū
ut̄ + T i

uT
tū
at̄ , (3.18)

M ī
ā = T ū

t̄ T
ti
au, (3.19)

M ī
ā = T ū

t̄ T
t
aT

i
u, (3.20)

M ū
t̄ = T ū

t̄ . (3.21)
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The all alpha part of the doubles part is built as follows,

M ij
ua =A (ij) τ iaT

tj̄
ut̄ +A (ij)T ī

t̄T
tj̄
uā, (3.22)

M ij
ua =T t

uT
īj̄
t̄ā , (3.23)

M ij
au =−A (ij) τ iaT

tj̄
ut̄ −A (ij)T ī

t̄T
tj̄
uā, (3.24)

M ij
au =−T t

uT
īj̄
t̄ā , (3.25)

M ti
ab =A (ab) τ ibT

tū
uā +A (ab)T ū

b̄ T
t̄i
uā, (3.26)

M ti
ab =T t

uT
ūī
b̄ā , (3.27)

M it
ab =−A (ab) τ ibT

tū
uā −A (ab)T ū

b̄ T
t̄i
uā, (3.28)

M it
ab =−T t

uT
ūī
b̄ā , (3.29)

M ij
ab =−A (ij; ab) τ jb

(
T ū
ā T

t̄i
ut̄ + T ī

t̄T
tū
uā

)
−A

(̄
ij̄; āb̄

) (
T ūī
t̄ā T

tj̄

ub̄

)
−A (̄ij̄)T ūī

āb̄T
tj̄
ut̄ −A (ab)T īj̄

t̄āT
tū
ub̄ −A

(̄
ij̄; āb̄

)
T ū
ā T

j̄
t̄ T

t̄i
ub̄, (3.30)

M ij
ab =−A

(̄
ij̄; āb̄

)
τ īā

(
T ū
t̄ T

tj̄

ub̄
+ T t

uT
ūj̄

t̄b̄

)
−A (̄ij̄)T t

uT
j̄
t̄ T

ūī
āb̄ −A

(
āb̄
)
T t
uT

ū
b̄ T

īj̄
t̄ā , (3.31)

M it
au =− T t̄i

uā, (3.32)

M ti
au =T t̄i

uā, (3.33)

M it
ua =T t̄i

uā, (3.34)

M ti
ua =−T t̄i

uā, (3.35)

M it
au =−τ īāT

t
u, (3.36)

M it
ua =+τ īāT

t
u, (3.37)

M ti
au =+τ īāT

t
u, (3.38)

M ti
ua =−τ īāT

t
u. (3.39)

The all beta part of the doubles M tensor is obtained from the all alpha part analogously
to the presented singles M tensor.
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The alpha beta part is calculated as follows,

M ij̄
uā =− τ j̄āT

t̄i
ut̄ − T j

uT
t̄i
at̄ − T t

aτ
jī
ut̄ − T ī

t̄T
tj
au, (3.40)

M ij̄
uā =T t

uT
jī
at̄ , (3.41)

M jī
at̄ =−τ jaT

iū
ut̄ − T j̄

t̄ T
iū
uā − T ū

ā τ
ij̄
ut̄ − T i

uT
j̄ū
t̄ā , (3.42)

M jī
at̄ =T ū

t̄ T
ij̄
uā, (3.43)

M t̄i
ab̄ =τ īb̄T

tū
uā + T t

bT
iū
uā + T i

uτ
tū
bā + T ū

ā T
it
ub, (3.44)

M t̄i
ab̄ =−T t

uT
iū
bā , (3.45)

M iū
bā =τ ibT

tū
at̄ + T ū

b̄ T
t̄i
at̄ + T ī

t̄ τ
tū
ab̄ + T t

aT
īū
t̄b̄ , (3.46)

M iū
bā =−T ū

t̄ T
t̄i
ab̄, (3.47)

M ij̄

ab̄
=− τ j̄

b̄
(T ū

ā T
t̄i
ut̄ + T ī

t̄T
tū
uā)−τ ia(T

jū
ut̄ T

t
b + T tū

bt̄ T
j
u)

+ T ī
t̄T

ū
ā T

tj
ub + T t

bT
j
uT

ūī
t̄ā − T j

uT
ū
ā T

t̄i
bt̄ − T t

bT
ī
t̄T

jū
uā

− τ jīut̄τ
tū
bā + T jū

ut̄ T
t̄i
bā + T t̄i

ut̄T
jū
bā + T tū

bt̄ T
jī
uā

+ T tū
uāT

jī
bt̄−T tj

ubT
ūī
t̄ā − T t̄i

uāT
jū
bt̄ − T jū

uāT
t̄i
bt̄ , (3.48)

M ij̄

ab̄
=−τ j̄

b̄
T t
uT

ūī
āt̄ − τ iaT

ū
t̄ T

jt
ub + T t

uT
ī
t̄T

jū
bā + T t

uT
ū
ā T

jī
bt̄

+T ū
t̄ T

t
bT

jī
uā + T ū

t̄ T
j
uT

t̄i
bā, (3.49)

M t̄i
ut̄ =T i

u, (3.50)

M iū
ut̄ =T ī

t̄ , (3.51)

M t̄i
uā =τ itua, (3.52)

M iū
at̄ =τ īūt̄ā , (3.53)

M t̄i
at̄ =τ iūuā, (3.54)

M iū
uā =τ t̄iat̄, (3.55)

M tū
uā =− T t

a, (3.56)

M tū
at̄ =−T ū

ā , (3.57)

M ij̄
ut̄ =− τ jīut̄, (3.58)

M tū
ab̄ =− τ tūbā . (3.59)

The effective Hamiltonian W is just the all active part of the residuum,

W = Rtū
ut̄. (3.60)

The all internal doubles T tū
ut̄ coupled cluster amplitude is set to zero at the beginning of

every iteration. At the end of every iteration the all internal doubles residuum Rtū
ut̄ is set

to zero.
IAS contribution to the energy,

∆EIAS = −W tū
ut̄ T

t
uT

ū
t̄ . (3.61)
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