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Chapter 1

Introduction

1.1 General

In this document we collect the equations and derivations for methods implemented in the
ElemCo.jl package. The final goal is to have a document which can be used as a reference
for the equations and derivations. The final equations should also be contained in the
code as docstrings or copied to the corresponding Markdown files.

1.2 Notation

We use the following notation throughout the document.

The virtual orbitals are denoted by a, b, c, ..., the occupied orbitals by ¢, 7, k, ..., the
active (open-shell) orbitals by ¢,u,v,..., and the general orbital indices are denoted by
p,q,r,s. The Einstein summation convention is used for repeated indices (repeated lower
and upper indices are summed over). The o and  spin orbitals are denoted by p and p.

The integrals are not antisymmetrized and denoted by v7, where p, ¢, 7, s are indices
of orbitals, and the lower indices correspond to the creation and the upper indices to the
annihilation operators in the Hamiltonian,

H = Ey + hiala, + Lorsa atalagay, (1.1)

2pqpq

or for the normal-ordered Hamiltonian,
HN - fq {&TdQ}N+ 9 pq {CL asar}Na (12)
ie., ht = (plhlg), f& = (plfla) and v73 = (pq|rs).

Permutation operators: - -
P (ab) Xg = X

- iy 1.3
P (ab>ba) X = X! (13)
Symmetrization operators:
S (ab) Xz;{) = Xt;{) + XZ‘ZJ, (1 4)
S (ab, 1) X = Xop + Xi
Antisymmetrization operators:
Alab) X7 = X4 — x4

( ) ab ab ba (15)

Alabsif) X2 = X3 — X2, — X+ X{,
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Integrals

2.1 Density fitting and Cholesky decomposition

The electron-repulsion integrals in ElemCo.jl are obtained either from an external program
through an FCIDUMP [1] interface, or are calculated using the density-fitting approxi-
mation using an interface to the libcint[2] library.

In the density-fitting approximation, the electron-repulsion integrals are approximated
by

Vpa A U;P [U_I]PQ v;Q, (2.1)

where U;P and U;Q are density-fitted 3-index integrals with auxiliary basis functions P, ),

*(r1)@" (r1) o (v
orP = /drldr2¢p( )" (r1)e ( 2)’ (2.2)
vy — 1o
and v7¢ is the Coulomb metric matrix,
P Q
JPQ / ey dp, & TV (1) (2.3)
[T — 1o
The Coulomb metric matrix is decomposed using the Cholesky factorization,
WP =>"LTLY, (2.4)
L

where LI is a lower triangular matrix. Thereafter, a non-symmetric square root of the
inverse, C5, is calculated by solving the equations

with 6% being the Kronecker delta. If LY is low-rank, the equation is solved using the
QR decomposition, otherwise it can be solved by simple back-substitution.

The transformed density-fitted integrals which are used throughout ElemCo.jl are then
calculated by multiplying the density-fitted 3-index integrals with the non-symmetric
square root of the inverse,

ot =vrCE, (2.6)
and the density-fitted 4-index integrals can be calculated by

Vpa A Zv;ngL. (2.7)
L

3
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If all integrals are calculated using the density-fitting approximation using mp2fit
fitting basis in ElemCo.jl , the correction terms are added using the jkfit fitting basis
to the one-body and zero-body terms of the Hamiltonian in order to ensure that the
reference energy and the Fock matrix from DF-HF is not changed by the density-fitting

approximation,
=1 =30 (2ot = vaf)
- (2.8)
Eo = Ey+hi—hi+ fI,
where Lo I
fi= g+ 3 (2uholt — i), 29)
L

and I denotes the core orbitals (cf. Sec. 2.2), i denote all occupied orbitals (including core)
and other indices do not include the core orbitals. L corresponds to the jkfit density-fitting
basis functions, and L corresponds to the mp2fit density-fitting basis functions.

2.2 Frozen-core approximation

The frozen-core approximation is used to reduce the number of orbitals in the correlated
calculation. The frozen-core approximation is implemented in ElemCo.jl by setting the
corresponding integrals to zero and adding their contribution to the one-particle and
zero-particle part of the Hamiltonian,

R N ql | Iq
hp—hp+2vp1 )

pl
- 2.10
Ey = By + 2k} + 201 — ol 210

where I,J denote the core orbitals, and other indices do not include the core orbitals.
For the UHF Hamiltonian, the frozen-core approximation is implemented as

T4 _ 1 al o | Iq
hp - hp+vp1 +Up[ Upr

hg = hg+ vl + 0l — ot (2.11)
~ -1 - _ -
By = Bo+ hf + b+ 5 (vf +vf + 20/ = of = of}) .

If the frozen-core approximation is used in combination with the density-fitting ap-
proximation, jkfit correction terms are added to the one-body and zero-body terms of
the Hamiltonian in order to ensure that the reference energy and the Fock matrix from
DF-HF is not changed by the frozen-core approximation, cf. Sec. 2.1.
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Hartree-Fock

3.1 Density-fitted Hartree-Fock

The density-fitted Hartree-Fock equations are given by
LCp = 5,C¢

1y =n 237 (viECh) Chur? — vkl (3.1)
L
v, = (."C) Cp.

Alternatively, the UZL integrals can be precomputed and the Fock matrix can be calculated
as

fr=nhl+ 22 <vfﬁC’J“l> UZL - vffvjz
L

(3.2)
iL _  vL /i
v, =v,C,.
Note that our orbitals are real, and therefore v;r = vaL, and CZ-T H= CZL.
The unrestricted Hartree-Fock equations are given (for « spin) by
10y =5,Crep
afy _ v iL i iL i L, vP iL, v
1 _hu+z <UM/CZ-M —i—vu,Cz“)CPv“ — U, V1 (3.3)
L
iL __ (,vP i\ AL
v, = (Uu C'l,) Cp,

and equations for 8 spin can be obtained by swapping the spins.
The residual of the Hartree-Fock equations, which can be used in DIIS, is given by

Afr =8V D0 fY — f/DlSY,  with DY =CiOl. (3.4)

3.2 (Bi-orthogonal) Hartree-Fock

The closed-shell Hartree-Fock on top of the FCIDUMP integrals (including the case of
similarity-transformed Hamiltonians) is given by

et - G
. ~ 7 i3 1 5q
=t (vE - 33, (35)
T=2) e

1€0cc
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where tilde indices correspond to the original orbitals. If the FCIDUMP is similarity-
transformed, CI™ # C?, and CI" are obtained as an inverse of C¥ such that CJ"CL = 47
The unrestricted Hartree-Fock equations are given (for a case) by

“fICT = (P,
°ff = hE+ (M + AL ViE — iV
“i=) ara (3.6)
i€occ
=Y afcl
i€occ
and equations for § spin can be obtained by swapping the spins. Note that if the
FCIDUMP is of UHF type, the original indices and integrals are spin-dependent, which
has to be taken into account in the equations.

The residual of the Hartree-Fock equations, which can be used in DIIS, is equivalent
to Eq. (3.4), with the overlap matrix S} removed.
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Density-Fitted Multiconfigurational

Self-Consistent Field

4.1 Orbital Rotation

The orbital transformed wavefunction can be expressed by
W) = exp(R)]0),
where ]
exp(R):1+I%+§R2+--- :
R=RE"

r—s?

(4.1)

(4.2)

EA;” is the singlet excitation operator (al, axa + diﬁdkﬁ’). Mathemetically if R is anti-

A

symmetric, exp(R) is an unitary transformation.
R = —R.,
R=[RUE; — EY)]r>s,

4.2 MCSCF

The energy expectation value of the wavefunction is be given by

E(R) = (V|H|Y)
= (0] exp(—R)H exp(R)|0)

= (0]12]0) + (0|[H, R]|0) + %(0\[[19, R, R]|0) + -

1
:E0+ng—|—§xThx—|—--~ .
In which Hamiltonian operator His expressed as

A e 1 e
H=FE,+ hga;}aq + §vgia;aia5aq

pr-gs’

N
= By + WyE} + Sopel,

(4.3)

(4.4)

(4.5)
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with €7 as the 2-electron excitation operator ) aLUaITaSquJ. In the first expression,
p,q,r,s denote the spin orbitals, and in the second expression, p,q,r,s denote spatial
orbitals.

The orbital transformation parameters R is expressed as vector x, the linear coef-
ficients as gradient vector g, the quadratic coefficients as matrix h. When terms after
the quadratic terms truncated, to minimize the energy expectation value, the Lagrangian

equation as known as the Newton-Raphson equation is
0

1
8_(ng + ixThx) =g+hx=0. (4.6)
X

Since the internal rotation of each of doubly occupied orbitals and virtual orbitals don’t
change the wavefunction, vector x is consisted of 4 parts, can be expressed as [x, xJ, x', x2].
Here, g is calculated from

oF
gf = <8_x’;)R:°

= (0[H, £}, — £7]|0)

1
P RIS B+ Lagterio o

= [1 =P (rk))(O[RT B — WEEY 05 &b, — ok, o),

q's’ pr’ rs’

= [1 — P (rk)](h? 'DE — Bk, DY + uzj 2D, — ks, 2DP)

let

1
— (w5 2D, 4 om, 2D, (4.8)

1 ! !
k q 1Nk r 1np
Ar' - i(hr] Dq/ + hp/ Di ) 2 q's

then
gy = 2(A} — A}). (4.9)

In which 1-particle density matrix D and 2-particle density matrix 2D are defined as

1Dt = <O|Et|0> = C[CJ<(I)I|Et|CI)J>

. . (4.10)
Dl = (01€1,|0) = cres (@rléy,,|2y).
In order to simplify the expression, the 'D¥ is written as D%, and *D{" is written as D
in follow.
Fock matrix can be generalizingly defined as

1
FS_CFS+Dt[rt_§Urt] (411)

with ' ‘
B = bt + (20 — o) (4.12)

defined as the closed shell part of Fock matrix.
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AKX can be calculated as

i 1 ey r / 1 's" ~ir' rs’ /!
A,r, :5(}23 Dq/ + hp/'D’Lp ) + §<Ug1”/ Dq/S’ + Up/T/DfS/ ),
_ 2 2 T M) ) ) T] v Jt N T MJr
=5 (D + hiD;) + 5 (v Dij + v Dij + v D + vt Dy
+ 0,4 D + v, D' + 07y Dy + v Dif)
:E(thr + 2h]) + —(41}% + 41);? — 21}% — 21);5 + QUf,?DZ + QU?D? — U%Dt — UZD?)

2 U u
=S (ri) (h} + 208, = ol + vl DL = SuiD})

=S (ri) F,
(4.13)

" 1 / u r / 1 /! ur’ rs’ /!
AT :§(h/?. Dq/ + h/p/Dg ) + _(Ug,r/ Dq/s/ + /UP;STJDZS/ )

2
LD £ DY) £ LD 4 oD 4o D s gD DY 4 pity
2 r "t t~u 2 rjtg ty T uj rw-— tv tv uw rj— gt Jt —ug
=5 (WD} + 1y DY) + 5 (203 DY + 200 D, + o, Dyt + v Dy, — o7 Dy = 3l D))
1 . . 1 i i o D
=51k + 2035 — ) DYt + v, D] + S[(B] + 20 —vif) Dy, + vy DL
1 1
=5 (FrD} + v, D) + 5 (CF D, + v D),
(4.14)
A* = 0. (4.15)

Electronic energy F after orbital transformation is calculated with transformed orbitals
and active orbital 1- and 2-particle density matrices

1
with 4 '
E.= W + Fl, (4.17)

E. is the closed shell electronic energy.
The 4-index integral vy’ is calculated as the density fitted integrals, as mentioned in
previous chapter,

ww __ uwl, wlL
vtv *Ut Uv )

ul __ vL e yu
v =v, GO

Likewise, other four-index integrals in this chapter are calculated in the same way.

(4.18)

4.3 Augmented Hessian

In order to make the coefficients transforming step smaller and more robust, a level-shift
€ is introduced to control the step x [3]

g+ (h+ed)x=0, (4.19)
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in which
e=—-\xTg, (4.20)

<A0g A1g1T> (i) v (i) ' (4.21)

We search for the value of A with a combination method of linear search and logarith-
mic bisection search:

\ = (|Xsmany || — trust) + (trust — ||Xiarger||)

Y

(4.22)

HXsmall)\ || - Hxlarge)\ H
A =exp (In small\ + (Inbigh — In smallX) x bisecdamp).

If there are both tested smallest and biggest limits in one iteration search for A\, we
adopt the linear search with the norm of both limit x, otherwise, we use either the upper
and lower boundaries value(by default set to be 1000 and 1) and the tested A to do the
logarithmic bisection search.

4.4 Hessian Approximation

4.4.1 First Order Approximation
We adopt the Super-CI optimization approximation|!], in which

HY =" FIE, (4.23)
pq
E© = (0|H7)0), (4.24)
SO = 2(rk|HT — E©)s1). (4.25)
More specifically,
SCITS, —A(5IF! ~ L))
*“Hyy =—20,F' Dy,
SUHY, =6](4F} — 2F, D),
(4.26)

SC!Hiu —0
tb T

SUTHy (2D} — 46} F! + 26 [2F} — (DL}

tu uw

SOUHty =263(Dly, — DDy FY + 2DLF

uw ua”

t Mv w v U v U
- D’U,D’IU)FU - Dt Fu - Ft Du]?



CHAPTER 4. DENSITY-FITTED MULTICONFIGURATIONAL SELF-CONSISTENT FIELD11

4.4.2 Second Order Approximation

In general, the second-order Hessian matrix elements are calculated as

oF
SOrrkl

I _
s (3@’?81:2)1{_0

1 o
=58 (rs, k) (O|[[H, E} — E}), E; — Ej]|0)

:%5 (rs. k1) A (rks s1) (O|[[E, £¥], £1))0)

1 A A~ 1AL 1 's! !yl
=58 (s, k1) A (rks st) (O [EL, [EF, W) By + Sofnén1|0)
1

=58 (rs, ki) A (rk; sl) (—h.D¥ — hED! + h? DL, 6% + hk, D¥' 5!

k,q's nylr 1, ks mHp'r’ Is" mkr’ ks’ nylr’
+ (SS Uyt Dq’s’ + 5TUP’T,DSS’ — ,U’r‘T/Dss’ — Ugpr DT‘S’
! ol /ol / / / /

q's’ Mkl Kkl pp'r’ 4l ke’ ks’ nyp'l

+ 08 Dy + vy, DY — ol D — vy DY)

_ . I Nk ki s’ Mkr’ ks’ Hylr! q's' Mkl kl p'r! q'l kr' ks’ 'l
=A(rk; sl) (=h,D§ — hiD, — v, Do —vg Dy + vl Doy + vy DY — vl Dore — v DY)

1 k ey r o q's" Hir' rs’ o'’
+ 58 (7'5, kl) ./4 (Tk, Sl) 68 (hg Dq/ + hp/Dl -+ UT’T" Dq’s’ —+ UP/T/DlS’ )
=A (rk; sl) (hf,le + thé + Ui;; Dl]‘f;?/ + 1’:;: DZ:;, + /UE;S,D’;/ZS/ + 11;;97,/D£;T, + ’z,vf;‘?DSf{ + v;f; Dﬁ;l,)
+ A (rk; sl) (0% AL 4 5L AF)
=A(rk;sl) 2G™ + (AL + A))]

— A(rk; sI) [2GE. — 5F(A3 + A1),
(4.27)
matrices G are defined as

GM = ;(fzin +RIDL 4 0 DI ol DI 0T DM s DY o DR o DEL
(4.28)
G =G§/(FI + F))+ LY + L7, (4.29)
GY, = §(DLL + DILS) = G, (4.30)
Gy = ;(CFSD? + Fy Dy, + vy Dy + 05 D) + 07 Dy, + vy, DY (4.31)
where

LP8 = 208 4 285 — % — 2, (4.32)
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4.4.3 Combined Second-Order and Super-CI Hessian Approxi-
mation

By default, the SO-SCI Hessian matrix [] is approximated as below:

SO—-SClIryrig _ SClryig
Hab - Hab’
SO—SClrriu __ SClryiu
Hab - Hab’
SO—-SClrrij __ SClryij
Hau - Hau7 (4 33)
SO—SCIHiu _ SOHiu :
tb T tb o
SO—-SCIrrij _ SOgyij
Htu - Htu?

SO-SCIfytu _ SOptu,

If the SO_SCI origin option is set to be false,

SO—SCIHtu _ SC’IHtu
ab —

ab»

(4.34)

and the rest blocks of Hessian matrix remain the same.
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CCSD and DCSD amplitude and A
equations

5.1 Closed-shell CCSD/DCSD Lagrangian

The singles-dressed factorization of the closed-shell CCSD and DCSD amplitude equa-
tions roughly follows the factorization from Ref. [(]. The closed-shell CCSD and DCSD
Lagrangian is given by
L = v+ (f+ f) T+ Agpoll, + Ash (000 T0) Thh + AT
+ALITHTY

ad ¢

w0t (o) { (s - 2ot 7 - (o el ) 74 5)
T N _

(4 oBtTit) 78 - alsry - alsrd gt (14 - 1) |

+ A fo+ NTI + MOETY — AT

The DCSD Lagrangian is obtained by removing terms in red.
Integrals with hats are dressed integrals, i.e. they are obtained by dressing the integrals
with the singles amplitudes, and the Fock matrix is internally dressed, too, e.g.,

cid id | edri
Uy = v + v 1
Sii il ik
Vg = Vg — V15 (5.2)

Jie = b+ 205 — 0 = fi + (20 — i) T

Note that only the lower virtual and upper occupied indices are dressed.

The amplitude equations can be obtained by taking the derivative of the Lagrangian
with respect to the Lagrange multipliers A and setting the result to zero.

The most efficient version of CCSD/DCSD in ElemCo.jl combines the dressed factor-

13
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ization from above with the cckext type of factorization from Ref. [7] and is given by

L= olTH 4 (f,s + f,s) TE + A (0740 T2) Tht + A& K13 6857

pg-a

ab, cdrpkj il
+AG v T To

) 1 . . A 1 s j
08 Gabi) { (Js = 2ot ) 74 (f+ 20 gt Te ) 74

ol N e o )
~id cdrpik lj ~ic kg ~icrpkj  cdrpki lj lj
+ (%z + 5 Ukl Toe | Tap — UpaT ey — Ui Tad =i Tag (1 — 1,

ij 1 a 171
— K (55552 - §5Z5?Té> Tf} + ALK (26087 — §750)
— ML) (20787 — 0761) + Aghi, + AL fi Tl — Ao T
where

a-r-s

Ky = v (T + TiT)) 6760 + 6,178, + 1,667 + 6,07)

and h is the one-particle part of the Hamiltonian.

(5.3)

(5.4)

5.2 Closed-shell CCSD/DSCD Lagrangian multipli-

ers equations

The A equations are obtained by taking the derivative of the Lagrangian Eq. (5.1) with

respect to the amplitudes and setting the result to zero, i.e.,

oL
arm

=2 (2%, — 0D ) TY + 25 — AP0, — Ao + A6 + AP ol

jm ij “mb ij Yam mj“ab im " ab

+ Ao Ty + Aoy o T — AP oeh o) — Afsoet T

J im i “mb ij Yam™ cd
eb pd mij ae pd mij ab perkj ab pferpik
- Aij deb - Aij mTad - Amj kTab - Azm kTab

+ AYS (ab, ij) {(zﬁgffn — O) T — (2005, — 050) Tai }

bid lj ~jd il b ~edrlj b ~edrpil
— AL T — NSO T AR 0T 4+ Ao TY,

17 “ml 17 “ml mj“al im bl
eb~ic kj ab ~ecrpkj aerjc ik ab ~ecrik
+ AU Ty — A0k Ty + Af 0, Tae — A Ui Tae

aepic kg ab psecrpkj ebnjc ik ab nec ik
+ Aij Ukaac - Amjvkaac + Aij Ukacb - Aimvkach

= N+ AL+ AT (2005, — 0
+ A (208, — vD) Tl — ASobe, Thi — AL ST,

i “mk m"”jk

(5.5)
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oc
oT"

mn mn "~ ab

1 £ ij : ij ef ik ~e
= 38 (e, mn) | Mg, F156k, + AT (884000 T5) +A i T + Agmo]

_|_Aeb,UCfTC'll) + Aafqvedij

n "~ ml mjkn" ad

2mn cb

2 L s 1 y
+ ALS (af mn) (f§ — 2x §v2?Tfé) — AGS (eb, i) 2% 03], T

N 1, - 1 -
— NS (ef,in) ( fi+2x §vflegg) — A%.S (ab, mj) 2% 5@;£ng

. 1 - . 1 ~.
#2018 (afin) (86 + T ) — A2LS (afim) (it + i TE)  (50)

1 o 1 o
+ 2A$nb]5 (eb> m]) §U£?Téi - AngS (eb> n]) évfnleclli
— AYS (af,in) v, — ALS (eb,in) 0,

—ADLS (fb.m) v (TH =T ) = ASLS (af i) i, T

+A%S (ab,ij) vl TH
o+ T(mn) {5, 7+ Aol — Aols, } .
with a “contravariation” operator,
T(mn) X =2x¢ — X (5.7)

Now we can introduce useful intermediate quantities, related to the density matrices.
The one-body reduced density matrices can be written as

D] = 203y,
Dy = 2ATyc,
D% = A% (58)
Dl = ATk,

Note that we have excluded here terms coming from the singles amplitudes. Thus, if
this density matrix is used to calculate properties, the corresponding integrals should be
dressed. Alternatively, one can define “dressed” density matrices which include the singles
contributions, ' '

D] = D] — DT?

D} = D)+ DT,
A (5.9)
D} = Dy,
D! = D! + 2T — DST" + DLT*.
Some parts of the two-body reduced density matrices can be written as
kl _ pcdikl
Dz‘j‘ = A Tcd‘
DY = AT (5.10)

naj A ackj carpkj
Dib - Azk ch + Azk‘ Tbc
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Finally, we define the following quantities which correspond to the cckext factorization
and a doubles-dressing of the Fock matrix,

Kp, = Avore

mn “pq
AP — N2 6RST — Aaw Taol g — Nop 08T 67 + Age, ToTY 6761 (5.11)
T, = T w = Towvg;

With these definitions, the A equations can be written as

oL

o = (2082 — v2)) DI+ 28, — 20267, + 2K1%,6¢ (87 + 62T}

ij o m mjor
kL ~ej  oneb (ned if\ e fd k fe  opelnid al sed (5.12)
—+ 2Dm'vkl 2Al] (/Umchd) Ddfm + Dmfk: 2Z)idvml + 2D5,40

J md“al

+2Dk0ie, — 2D or¢ — ASfi 4+ AL fe — Afal, — A% at.

ic “km mc“ka a

oc
oT"

mn-r-s

= gl + A5 (00,0t T2) + Dot + K 656]
af ( fe 1 e ef [ fi L ;

1 1 , -
+ 7 (mn) {QX Zv,jﬁD,’; —2x va,{an + Ay (@;; + v;;fnT;’;) (5.13)

1 n A
vy (aadf + Azl - afe,)|

af ~ie ebrif £l ce ek fd
_Azn Uma — Ainvmb_Dncvml + Dndvk:m :

5.3 Perturbative triples for closed-shell CCSD

The perturbative triples equations for CCSD are given by

Egp= Y pli,j, k) KX e
i<j<h
2 ik (5.14)
pli,j k)= |1 i=j@j=k
0 i=j—k

X;{)’Z and K Zl}f are calculated for the triangular set of indices i < j < k (with k =1 : nye.),

b ik dkepig o dkrpij | digeik | djepik | dicpgk | dicpgk
KZkC - K;ch = Upc T;jd + Uge Tc;i + UciTcid + Uag)Tt;c + Uczzsz]d + Ub;chlc
ikl ikeplj ) kjrpli ijrplk ) kil itk
- Uljc szZz - vllc Tag) - UlbchZL - Ulzlj)Tac - Ulachlj) - UZJ;Tbc (515)
ik _ Mg, — 2000 — 2K — 20 + Koy + K,
abe €+ €+ € —€ — € —€
The (T) correction contains additionally the following terms,
o x S o

By = Egy+ Y pli,j, k) [vﬁiXiich“ + U XTI o X IR T

i<j<k (5.16)

_‘_jva]?cXijkfia + TifkacXijkf]z? 4 TiBainjkflg] .

abc abc abc
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In case of ACCSD(T) K is different from K, ¥ and is calculated using the Lagrange
multipliers,

abc __ _ bc A ad ac A db chb A ad ab A dc ca A bd ba A dc
K5 = vapNiy + vgi\g) + vgi Ay + vgy Ajg + vai Ay + vgi Ajy

_ _ _ _ - - 5.17

A A - AT - N A -
where A;’f are the covariant Lagrange multipliers,
- 2 1

A = SN+ AN (5.18)

3 3

Additionally, the conjugate-transposed amplitudes in Eq. (5.16) are replaced by the co-
variant Lagrange multipliers A?}’ and A} = %Af

5.4 Open-shell CCSD/DSCD Lagrangian

The factorization of the open-shell CCSD/DCSD amplitude equations roughly follows
the factorization of the closed-shell equations, Sec. 5.1. The open-shell CCSD and DCSD
Lagrangian — i.e., spin dependent — is given by

L=Ly+Ls+ Lap, (5.19)

1 " 1 nid i 1 u i 1 i
Lo=3 [vfé?lT "+ ( [+ f,j) Tf] +7 A (0 — 571 + 7 A (szz +2'“;;7Tc§z> T

1 ;o1 -
T ASGATE + ALS (abyig) {a0TH — 34T }

ij “ab

al

L. - N adi | i lj ~id id il (5'20)
MDA ab i) { (08 — o+ 79 T + (0 + o) T
+ AJOSTI + AT — AT — AJOS T
a i a £brij a pbrij
+Aifa +Aiijab +A1f§Ta5’

or using the cckext factorization,

1 : o (i L s
Lo [ontmht + (i + ) 72] + gt (e ot ) 72
1 g 1 (i
+ TASIG, (38 = OTE) (08 — O7T) + JAUS (ab i) {acry - a1 }
L . nid  adi | =id\ i id id il (5-21)
+ ZLAz] A ((lb, 7’]) {(Ual — Uy + xal) Td{) + (Ual_ + ‘ral_) TbJJ}
a i ij <G k apic mjk anic gk
+ A (Kpﬂqag + Kpfq(sg> (67 — S1TE) — AT — Ao T!
+ AZRL + A FOTE + AL T
L3 is obtained from L, by flipping the spins;
Lop = vfT + N0 + A (00T ) T + AosiT
+ AL {@;ng + 39T T — :E;T;g}
) (5.22)

ab [ (nid _ ~di id | =id\ qlj ~jd _ ~dj Jd\ il
+ A {(Ual B + wop + Top) Tt + (UI;[ Uy T 2%{) Toq

~id cdrik \ plj | sdimril  aci ik ~id  cdril \ ki
+ (U +Uleac> Ty + 0 Toq — 0318 — (Op—v ) Togr s

al
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or using the cckext factorization,
cdrkl ab [ #i7 |  .cdrid kl ab 1717 k q gl
Lap = ViITH + N (55050 T3 ) Th + NS K (30 - 97TE) (o - 97T

ab [ semrij | sdmpii _ sirki  sjepil
+ A5 {xaTd; + 5L — 3y x[Tab}

e T (5.23)
+ Az { (034 — o + aid + 5i9) T + (o] — o + 2030 T,
~id cdrpik \ mli | ~djrpil ~cj ik ~id _ edril \ okj
+ (Ua,[ + kaTac> Ta% + UIBJTad - a%TcB - (Ukli)ivk;lij—‘(fﬁ> Tag%} :
The intermediate quantities are defined as follows,
Ki =Dl K= D]
DY, = (T + T, T) — TyT]) 6765 + Al(ij; rs) 6,1y 67 + 6,8] — 646}
DY = (T + TiT] ) 026% + 01T]0% + Tio26] + 0103
% 1 % ¢ c
xacll - ETQIZ (Uk;livlil;ll)
i = i+ Tk 20
id 1

_ ik (ed , de
‘xal_ - 2Taé (Ukl Ukl)

5.4.1 Spin-restricted open-shell CCSD/DSCD

The spin-restricted versions rccsd and rdcsd are obtained through spin-projection of the
residuals and amplitudes from the spin-dependent equations in each iteration. [3, 9]
In this section we use the following notation:

aorqij _ i
Tab - Tab’

T =T, (5.25)
T =T

and the spin-projected amplitudes are denoted by a bar, e.g., aﬁTéi. Moreover, the
indices i, 7, . .. run in the following part of the section over the closed-shell part of occupied
orbitals, a,b,... over the (doubly) virtual orbitals, and ¢, u,... over the singly occupied
(or singly-virtual) orbitals.

The “closed-shell” part of spin-projected a3 amplitudes is given by

P y wBeii B wBeii B
OCB,T’a{) = 6( Ta{) + BﬁTa{) +2 6Ta€) + ﬂTchL +2 ﬂTlfa + 6Tib) (526>
The “open-shell” part of spin-projected a8 amplitudes is given by

apij L ij aBrrii | aBji

/BTai = §< IBBTai +2 ﬁTai + ﬁT(it)

aBty 1 aamt] « j « j
T =5( Ty +2 T+ T, (5.27)

St

afpti _ afpty 4 u (BTJ' _ api _ aﬁij)
au au 2m5+2 a a av
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The projection corrections for the remaining amplitudes are defined in terms of the new
spin-projected a8 amplitudes as follows. For singles amplitudes,

. 1 . . _ .
aqi (o Bt ofrgwi

Ta - 2 ( Ta + Ta Tav) )

_. 1 . . .
Bpi . — ( agi Bri afrpui (528)
To=5 T+ "To+ T3,

Tt = °T! and AT = AT
For the aa and B8 amplitudes,

ooij _  afmqtj Brij

Tab = Tab - Tba’
T = T = T T
ﬁﬁTij _ ﬁﬂj"ﬁ _ OL/D’TU a,BTji (5'29)
at — ta at ~ at»

Ty = Ty and YT = PT
5.5 Open-shell CCSD/DSCD Lagrangian multipliers

equations

The Lagrange multipliers equations for the open-shell CCSD/DSCD Lagrangian can be
obtained by taking the derivatives with respect to the amplitudes and setting them to
Zero.

0L, 1 . g 1 ,
o ce ec k ec k e eb~1g ab ~ej ab ~ejrmkl
— (Vkm — Vi) T2 + SUmi s + [ — Aij Uy Amjvab + _Amjvkl Ty
T 2 1
+ lAab piekl lAebAcd T _ lAaeACd TY _ lAeb re TY _ lAab feTkj
imVklL ab ij UmbL cd ij Vam2 cd ijJm~ chb mjJ k= ab
4 4 4 2 2
1 y . . .
ab ~ce ~ec ij ~ie ~ie kj
+ §AZJ {(Uam - Uam) ch - (Ukm - Umk) Tab } (5 30)
eb~id rplj ab nedrplj ebrdi il '
- Aij O Ly, + Amjval Ty + Aij U L,
_pab paderrli  pebsid il ab sedril
Aoy Oar Ty — Nij 0Ty + Ay oai T
e, cd rpil e, .cd il a secmjk a ~ecrpik
- Az Umchd - Az United — AmvjkTac - Amvj]_gTaE
e fi a fe a (~ie ~ei a (. be eb i a. .eb ij
- Az fm + Amfa + Az (vam - Uam) + Az (Ujm - Ujm) Tab + Az Uija(_,
o N B
OF8 _ ek 4 *pab {@EC,T@ _ @EZ,T@}
oTyr  27mee gy Lmane s Tminab (5.31)
ar~ei a. .eb g a eb be ji
+ AZ Unma + AZ UijaB + AZ (Umj - vmj) Tbav
OLas _ _pebyid At T 4 A ITH _ Ahged ]
orm 2 “mb mj "~ ab mj“kl " ab tj “mb~ cd
e
_Aebferij  pab ferpki
A’U mTcE Amjf kTal;
ab | (nce _ nec ij | psed i (nie aie kj _ ~ej il (532)
+ Aij {(Uam Uam) TCB + UmbTaJ (Uk:m Umk) TaB m[Tab}
eb ~id lj ab_ned lj eb~di lj o ab_~de 15
- Aij O L g, + Amjval Ty + Aij Ul Amjval Ty
_ Aebsid ilj ab_pedrlj ebncj ik A ab ~edkj
NGO T + N0 T + AZ0 - T — AV 0T,
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The corresponding equations for the derivatives with respect to the § amplitudes are
obtained by flipping the spins.
Derivatives with respect to doubles amplitudes are given by
oL,
4 mn
oryy

1 e 1 e ~ij 1 c ij 1 ab ,efrpk
=A (efv mn) |:§U7r{n + ZLAZJf (UTqun—i_QUnlenjjuf’) +§A7rlz)nvk:{ thbl
1

—Aab ~ef _Aaf e _A?f“l _ 2><_Ad,] cf T — 2><—Aab' eka’]
+ 4 mnvab _'_ 2 mnxa 2 mxm 4 () vmn cb 4 m]’Ukn ab (533)

§ o 1 ( .
+ A (ol — 0, + aie,) + 5 (v —ol) T

+A% e — A 4 AC

m-an T mn mfn} ?

OLs _
arm

(5.34)

4 OLas

Lyeb cf mij 1. :
aTgan = A(ef;mn) {—QX—Aevaf TY _ 2><§A:’£jvszkg

2 zj mn= cp n= ab

(5.35)

b fd . df\ mlj b, fdmlj b ~fi
AL (“nl _Lm) Top + MV Tap + Aiﬁvnz] )
0L,
ory"

n= ab

1 eb CfT 19 1 ab ef kj

Y 7 7 1 FT TR\ AT (5.36)
e d l ae A1 7 e d d l
+ An?jvmedi + A (va]; + an;> + §A,nlzj (véi —Uﬁ}f> Tb]&
+ A% 05] — Asoil, + A, 1
0Ls 1

- 1 - s
_ Jb,ec pij ab, ef qkj
ef

(5.37)

nj ml ml ml

= o = o _ 1 - .

Poedrli | paf (o b (o ed . dey il
+ Acvr Ty + Ass (vﬁfba + x%%) + EAﬁj (vps—vi) T2
+ Aot — Mo, + AMLF

oL F T (i ool i\ o nab ik, nab e
Dot —uify ot A (a3 Akl + At
ef

a mn -~ aqb
+Aaf e _QXlAeZ) cf Tij—f—AeB Af_QXEAaf ed sz
mnLq 9 ij Umad maLy o4 Umnd oq
— A@fi.l _ 2X—AabﬁUZka—J o A:rj:ji_% o 2><_Aabvef_Tl£ (538)

inm 9 mj n" ab 2 N ml” ab
r i ~ . . . l_) d r l_< l_) A_< r N ol =7
A (00, — 0k, + ale, + 3l5,) + N T + A (0] — of7 + 277
f nej b [ sif cf il af  edkj
— A — A% (8o mh) +ac o,
and the derivatives with respect to the 55 amplitudes are obtained by flipping the spins.
The one-body reduced density matrix (without singles contributions) is given by

, 1 coiit adomif
D = _§AichJd - AingJ
1 L
b _ L aberpkl g berk
D, = §Aleac + N Toe (5.39)
Df = A
D, = AiToe + AfTy
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and the g 1RDM is obtained by flipping the spins.
The full (dressed) one-body reduced density matrix is given by

Db = D)+ DyTY,
D = Dy,
D! = D! +T! — D°T! + DiT*.

(5.40)

Additionally, we define intermediates related to the two-body reduced density matrix,
Dkl _ lAchkl
i = 9ttt
Kl _ Acdrkl
Dij{ = A ch B (5.41)
Dy = AT + AT
~aj acrpkj acrik
Dy = NTG + AT

and doubles-dressed Fock matrix,

i edril cdril
Ty, = Vg Leg + 05T

c __ ,cdkl edrpkl (5'42)
Ty = Uy Tad + % Tad'
The intermediates for the cckext factorization are given by
rs __ Apq , TS
[A(mn - Azmqu \ ' , ) \ o (543)
At = N 0ady — Ay Ta07 05 — NG 60T 67 + A T0T5 0767

K’ and K2 are obtained by flipping the spins.

Finally, we define useful intermediates which can be precalculated and reused in the

equations,

~je ~ie ~et —ie ie
yam - Uam Uam + xam + xam

" o cam 1 tam (5.44
i = vfirg o+ 2c] |

With these intermediates the equations for the a Lagrange multipliers are given by

oL . o g o
— qe eq P eq Hp e ebij eb g
vle —ved ) DP + ol DE + fr — AS07 — AZ0Y

oTm - ( pm mp—4q ij “mb ij “mb
e

+ K860 (69 + 6°TY) + KI5 (52 + 5§T5) + Do + DL

mj-r mjor mj
1 eb (e ij eb [ ~cd ij e fc re
— 5A (054, T5) — A (055T5) — Defe + Dhf (5.45)

el (~di ~di al ~ed ~de Ael ~id Aal ~ed
+Did(vml_vlm)+Dmd(v —-v )_DJU i+D 1Val

al al id " m md "~ al
ebncj ik A ab nedkj
+ A0 Ty — A0 g

= ALf AL FE = Af, — AL

mTa
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[V B L.
i = Unin — Ui + A <Uf¥m+v‘d T, ) +Dl v+ K, 606]
ef

2 mn~ cd
+ S (ef,mm) { N s - Al }

1 1 | o (5.46)
+ A(ef;mn) {2>< §Dfnvz£ —2x §D§va{n + AZ{ Jam + A%?)gq{:

m-an 7 -mn

PTG A 4 AC F }

The equations for the § Lagrange multipliers are obtained by flipping the spins. The
equations for the af Lagrange multipliers are given by

oL f f i 7 -d rid .l ef 3 f
777 = i+ A (et st T) + D il + K026
+ Nohag + AL e — Afal, — A
Lok ef o pkoef _ pencf f, e
+ 2X§ <Dmvkﬁ + Dﬁvmk — Dgvgs — Dé”mﬁ) (5_47)

r ~ . I; /\7' r ~ R — 7 /\T
+ AW g+ Nl A2 g+ A e

_naf (el oedmqki) _ peb (~if o ef il
Amj <Uaﬁ Ukﬁ]ﬂa,{]) Aiﬁ (Uml; UrrLfTCb

+ A0 — A0 + A fi + Ata, — A0, + AL

m m

5.6 Perturbative triples for unrestricted CCSD

The perturbative triples equations for unrestricted CCSD are given by
g 1 I T | -
_ aberpigk aberpigk abc yrijk abc ik
Bry=g > KiiTie +5 >0 KaiTar+5 2 KiiXae + 5 > KGEXas  (5.4s)
i<j<k i<j<k i<jik i<jk

Kl‘f}f and T;if (and the all-S-counterparts) are calculated for a triangular set of indices

i <j <k (withk=3:n,),

abe __ 1-ijk dkrij dj ik dirpik 1 —kj il —kirplj —1j ikl
=K A ((IbC) {ch Tad + Uchad + UbaTdc - 5 Vel Tab + Vel Tab + Uachb )

ijk abc —
S i
Val = Vg Val»

ijk
ijk __ Kabc
abc T

€ T € T € — € — € — €

_ (5.49)
Kl‘;l}—f and T;{,]g (and the spin-flipped counterparts) are calculated for a triangular set of
first two indices i < j (with j =2 : n,),
KA — K = A(ab) {uf8T5) + ol + T8 + o338 1 TS — i
ik il ikl ik il ikrlj
_Ug],l‘ Th:— U;ZTgE} — Ve Loy, — Vi T, (5.50)
T
ik _ K
b e bt — €a— € — €2
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The (T) correction contains additionally the following terms,

E(T) = E[T] + Z [U?ETZ]]CTTQ 4 U;lkCTUkTTb + U%bTijkT]IC

abc "1 abc © j abc
1<j<k

1 g 5 g
vy (Tt 4 e T )

be rijkta aérpijkrth abrijkrte
+ [Uj;eTaian +ETIETT + v T T (5.51)
i<j;k
1

I+ TR + ]

+ spin-flipped terms.

In case of AUCCSD(T), K¢ and TJ* etc are different from K¢t and T9* and
can be calculated by replacing amplitudes with Lagrange multipliers (and integrals with

transpose integrals) in the above equations,

1
abc __ be A ad ch A ad ba A dc —cl A ab —cl A ab —al A cb
K55 = Alabc) {UdkAij + vg Ajy + v Aji — B (Uijil + oAl + UijAkl) )

Kl = Aab) {ohe NS + BN + o A% + vif AL+ oSS — BEIAYE (5.52)

bl A ac I\ be le nab _ ,le Aab

—UASE — AL — oS A — EAT,

and the conjugate-transpose of the amplitudes in Eq. (5.51) are replaced with the Lagrange
multipliers.



Chapter 6

Two determinant coupled cluster

Amplitudes are normal ordered with respect to the formal reference with two active or-
bitals ¢ and w. The occupied (i,7,...) and virtual (a,b,...) spaces do not contain the
active orbitals. The equations follow the equations presented in Ref.[10]. Differences be-
cause of fixed typos or other reasons are coloured blue. Terms we have added to ensure
energy invariance with respect to the reference choice and which are not explicitly listed
in Ref.[10] are coloured magenta. Terms we have added to ensure proper antisymmetry
and which are not explicitly listed in Ref.[10] are coloured green. IAS terms, which are
terms including the all internal singles, are coloured browmn.

Ry, = (A0} Hye™ | D) — (04" Po)( 0| Aye™ | %))
= (4% | Hye™ | D)o + MIW =0, (6.1)

RY, = (A8 Hye™ | 40)c — ((“0fle™| ") (Po| Hxe™| %))
— Alijsab) [(A0i]e™| @) ({“0]le"?| Fo)( Pl e | D))
— Riia){ "0} "] Po) ((“0|e™| %) (ol Hye™ | “0)) |
= ("% |Hye™| D) + MIW =0, (6.2)

The operator R(ia) excludes the active orbitals from the corresponding orbital spaces.
The following intermediates are used:

=T T (6.3)
=TI T

ij __ g i
T = 1 + 1,15

a
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The singles M tensor is built as follows,

M

ME —
MP =

M,
M
M
MY

ot

ut?
=TT},
— Tt
= -T!T!

U a?

= IO + TiTE

w t - ua’

_ T/ Tﬁl

u=at

= 77T

(¥ a

=TT+ ToT

a”ut at

it
=171

au’

— 7}17 TTT/'

Tauw?

_ U
=T"
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The all alpha part of the doubles part is built as follows,

M, =A(i5) T + A(if) T T3,

M =T'TY,

M, =—A(ij) 74T — A(ij) T{T33,

MY =—T'TY,

MY =A(ab) TiT + A (ab) Tl—?TZZ,

MY, =TUTE,

M =—A(ab) 775 — A(ab) T3 T2,

M =TI,

M = — A(ijsab) 7 (T35 + /Tl ) — A (ij;ab) (T TS)
— A T = Alab) TET = A (i]:ab) TIT{ T,

MY =—A(ij;ab) 7. (1,1*; + 1‘;1;%7)
—A(ij) T,T] Ty — A(ab) T,T;'T;,

M}, =— T,

MY, =T},

M, =Ti,

M, =—Ti,

Mt =—7IT!,

M =+7iT,

MY =47t

A [1‘/’ :7777—4‘

uQ

a-u*

26

The all beta part of the doubles M tensor is obtained from the all alpha part analogously
to the presented singles M tensor.
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The alpha beta part is calculated as follows,

M}, = — 7Tl — TITl — Tirl; — TiT4, (6.40)
M =TiT%, (6.41)
M2 =—7] T — TITiE — Ti7ls — TUTS, (6.42)
M =TT, (6.43)
MY, =T + Ty Ton + Tirgy + T2 T, (6.44)
Mg =—T,T;3, (6.45)
My =n T + T T + Tirly + TATY, (6.46)
My ==T¢'Ty;, (6.47)

M = — 7 (T8 + TiTE) (T T + T )
+TTITY + TITITE — TITETS — TiTI T
— TS+ T+ THT + T T

t

+ TS —TTE — TRT)T — T, (6.48)
MY == Ty T3 — 7 TE T, + Ty T + T T T

+HIFTLT) + TETITR, (6.49)
M =T7, (6.50)
M =T, (6.51)
M =7t (6.52)
Mi® =7t (6.53)
Ml =7t (6.54)
Mg =Ta, (6.55)
M =Tt (6.56)
M =—T" (6.57)
M =—1i, (6.58)
M= s (6.59)

The effective Hamiltonian W is just the all active part of the residuum,
W = R'™. (6.60)

The all internal doubles T coupled cluster amplitude is set to zero at the beginning of
every iteration. At the end of every iteration the all internal doubles residuum R'% is set
to zero.
IAS contribution to the energy,

AFEns = —WHTITE, (6.61)

ut
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Automatically generated UCCSDT
and UDC-CCSDT

Unrestricted implementations of CCSDT and DC-CCSDTY! 1, 12, 13] were generated with
version 1.0.1 of the Quantwo program|[l4]. The Quantwo inputs are listed below.

UCCSDT Quantwo input file:

prog,spinintegr=0,nobrafac=1,explspin=1,algo=2
output,level=1,maxlenline=70

\beq

<\Phi~{a}_{i}| \op H (1 + \op T_2 + \op T_3) [0>_C

\eeq
\beq

<\Phi~{ab}_{ij}| \op H (1 + \op T_2 + \half \op T_2 \op T_2 + \op T_3) [0>_C

\eeq
\beq

<\Phi~{abc}_{ijk}| \op H (\op T_2 + \op T_3 + \half \op T_2 \op T_2 + \op T_2 \op T_3) |0>_C

\eeq

UDC-CCSDT Quantwo input file:

Z%singles and doubles amplitude equations from UCCSDT
Zwe only modify the triples amplitude equation

prog,spinintegr=0,nobrafac=1,explspin=1,algo=2
output,level=1,maxlenline=70

\beq

<\Phi~{abc}_{ijk}| \op H (\op T_2 + \op T_3 + \frac{1}{2} \op T_2 \op T_2
+ \op T_2 \op T_3) 10>_C
+ (1 - \Perm{IJ}{JI} - \Perm{IK}{KI}) (1 - \Perm{AB}{BA} - \Perm{AC}{CA})
(\sum_{LMDE} \tnsr \intg{LE}{MD} \tnsr T"{IL}_{AD} \tnsr T~{MJK}_{EBC})

- \frac{1}{2}(1 -
\sum_{LMDE} \tnsr
- \frac{1}{2}(1 -
\sum_{LMDE} \tnsr
+ \frac{1}{2}(1 -
\sum_{LMDE} \tnsr
+ \frac{1}{2}(1 -
\sum_{LMDE} \tnsr
+ \frac{1}{2}(1 -
\sum_{LMDE} \tnsr
+ \frac{1}{2}(1 -
\sum_{LMDE} \tnsr
\eeq

\Perm{KI}{IK}
\intg{LD}{ME}
\Perm{CA}{AC}
\intg{LD}{ME}
\Perm{IJ}{JI}
\intg{LD}{ME}
\Perm{AB}{BA}
\intg{LD}{ME}
\Perm{KI}{IK}
\intg{LD}{ME}
\Perm{IJ}{JI}
\intg{LD}{ME}

- \Perm{KJ}{JK})

\tnsr T"{IJ}_{DE} \tnsr T"{LMK}_{ABC}

- \Perm{CB}{BC})

\tnsr T"{LM}_{AB} \tnsr T"{IJK}_{DEC}

- \Perm{IK}KI})

\tnsr T"{LI}_{DE} \tnsr T"{MJK}_{ABC}

- \Perm{AC}{CA})

\tnsr T~{LM}_{DA} \tnsr T~{IJK}_{EBC}

- \Perm{KJ}{JK}) (1 - \Perm{AB}{BA} - \Perm{AC}{CA})
\tnsr T"{IJ}_{AD} \tnsr T"{LMK}_{BEC}

- \Perm{IK}{KI}) (1 - \Perm{CA}{AC} - \Perm{CB}{BC})
\tnsr T"{IL}_{AB} \tnsr T~{JMK}_{DEC}

The program generates TensorOperations code. The generated code used by ElemCo.jl is
located in the src/algo directory.
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